Диссертация (1149340), страница 24
Текст из файла (страница 24)
32. С. xiv+355.129. Neittaanmäki P., Repin S. Reliable methods for computer simulation. Amsterdam: ElsevierScience B.V., 2004. Т. 33. С. x+305.130. Repin S. A posteriori estimates for partial differential equations. Walter de Gruyter GmbH& Co. KG, Berlin, 2008. Т. 4. С. xii+316.131. Repin S. I. Estimates of deviations from exact solutions of initial-boundary value problemfor the heat equation // Rend. Mat. Acc.
Lincei. 2002. Т. 13, № 9. С. 121–133.132. Gaevskaya A. V., Repin S. I. A Posteriori Error Estimates for Approximate Solutions ofLinear Parabolic Problems // Springer, Differential Equations. 2005. Т. 41, № 7. С. 970–983.133. Repin S. I., Tomar S. K. A posteriori error estimates for approximations of evolutionaryconvection-diffusion problems // J.
Math. Sci. (N. Y.). 2010. Т. 170, № 4. С. 554–566.134. Langer U., Repin S., Wolfmayr M. Functional a posteriori error estimates for parabolic timeperiodic boundary value problems // CMAM. 2015. Т. 15, № 3. С. 353–372.137135. Verfürth R. A posteriori error estimates for finite element discretizations of the heatequation // Calcolo. 2003. Т. 40, № 3. С. 195–212.136. Bangerth W., Rannacher R.
Adaptive finite element methods for differential equations.Birkhäuser Verlag, Basel, 2003. С. viii+207.137. Schmich M., Vexler B. Adaptivity with dynamic meshes for space-time finite elementdiscretizations of parabolic equations // SIAM J. Sci. Comput. 2007/08. Т. 30, № 1. С. 369–393.138. Meidner D., Rannacher R., Vexler B. A priori error estimates for finite element discretizationsof parabolic optimization problems with pointwise state constraints in time // SIAM J.Control Optim. 2011. Т.
49, № 5. С. 1961–1997.139. Richter T., Springer A., Vexler B. Efficient numerical realization of discontinuous Galerkinmethods for temporal discretization of parabolic problems // Numer. Math. 2013. Т. 124,№ 1. С. 151–182.140. Matculevich S., Repin S. Computable estimates of the distance to the exact solution of theevolutionary reaction-diffusion equation // Appl. Math.
and Comput. 2014. Т. 247. С. 329–347.141. S. Matculevich, S. Repin. Sharp bounds of constants in Poincare type inequalities forpolygonal domains // arXiv.org. 2015. № math/1407.6875. С. 1–21.142. Coddington E. A., Levinson N. Theory of ordinary differential equations. McGraw-Hill BookCompany, Inc., New York-Toronto-London, 1955. С. xii+429.143. Hairer E., Nørsett S. P., Wanner G. Solving ordinary differential equations. I. Second изд.Berlin: Springer-Verlag, 1993. Т. 8. С. xvi+528.144. Teschl G. Ordinary differential equations and dynamical systems. American MathematicalSociety, Providence, RI, 2012. Т. 140. С.
xii+356.145. Liouville J. Sur la Théorie de la variation des constantes arbitraires // Liouville J. de Math.1838. Т. 3. С. 342–349.146. Peano G. Intégration par séries des équations différentielles linéaires // Math. Annalen. 1888.Т. 32. С. 450–456.147. Bendixson I. Détermination des équations résolubles algébriquement dans lesquelles chaqueracine peut s’exprimer en fonction rationnelle de l’une d’entre elles // Ann. Fac.
Sci. ToulouseSci. Math. Sci. Phys. 1893. Т. 7, № 2. С. C1–C7.138148. Lindelöf E. Sur l’application de la méthode des approximations successives aux équationsdifférentielles ordinaires du premier ordre // Comptes rendus hebdomadaires des séances del’Académie des sciences. Juillet, 1894. Т. 114. С. 454–457.149. Picard E. Mémoire sur la théorie des équations aux dérivées partielles et la méthode desapproximations successives // J. de Math. pures et appl., 4e série. 1890. Т. 6.
С. 145–210.150. Picard E. Traité d’Analyse. III Volums. Paris, 1891–1896.151. Matculevich S., Neittaanmäki P., Repin S. Guaranteed error bounds for a class of PicardLindelöf iteration methods // Numerical methods for differential equations, optimization,and technological problems.
Dordrecht: Springer, 2013. Т. 27. С. 175–189.152. Matculevich S., Neittaanmäki P., Repin S. A posteriori error estimates for time-dependentreaction-diffusion problems based on the Payne–Weinberger inequality // DCDS-A. 2015.Т. 35, № 6. С. 2659–2677.153. S. Matculevich, S. Repin. Computable bounds of the distance to the exact solution ofparabolic problems based on Poincaré type inequalities // Zap. Nauchn. Sem. S.-Peterburg.Otdel. Mat. Inst.
Steklov (POMI). 2014. Т. 425, № 1. С. 7–34.154. Repin S., Sauter S. Functional a posteriori estimates for the reaction-diffusion problem //C. R. Acad. Sci. Paris. 2006. Т. 343, № 1. С. 349–354.155. Hildebrand F. B. Introduction to numerical analysis. McGraw-Hill Book Company, Inc., NewYork-Toronto-London, 1956. С. x+511.156. Repin S., Sauter S., Smolianski A. A posteriori error estimation for the Dirichlet problemwith account of the error in the approximation of boundary conditions // Computing. 2003.Т. 70, № 3.
С. 205–233.157. ©Copyright2015The FEniCSProject.TheFEniCS Project.2015.URL:http://fenicsproject.org/.158. Logg A., Mardal K.-A., Wells G. N. Automated solution of differential equations by the finiteelement method. Springer, Heidelberg, 2012. Т. 84. С. xiv+723.159.
Repin S. I., Tomar S. K. Guaranteed and robust error bounds for nonconformingapproximations of elliptic problems // IMA J. Numer. Anal. 2011. Т. 31, № 2. С. 597–615.160. Valdman J. Minimization of functional majorant in a posteriori error analysis based onH(div) multigrid-preconditioned CG method // Adv. Numer. Anal. 2009.
С. Art. ID 164519,15.139161. Kleiss S. K., Tomar S. Guaranteed and sharp a posteriori error estimates in isogeometricanalysis: Tech. Rep.: v2. Altenberger Strasse 69, A-4040 Linz, Austria: Johann RadonInstitute for Computational and Applied Mathematics (RICAM), Austrian Academy ofSciences, 2013.162.
Dörfler W. A convergent adaptive algorithm for Poisson’s equation // SIAM J. Numer. Anal.1996. Т. 33, № 3. С. 1106–1124.163. Courant R., Friedrichs K., Lewy H. On the partial difference equations of mathematicalphysics // IBM J. Res. Develop. 1967. Т. 11. С. 215–234.164. Dolgov S., Khoromskij B. Simultaneous state-time approximation of the chemical masterequation using tensor product formats // Numer. Linear Algebra Appl. 2015.
Т. 22, № 2.С. 197–219.165. Dolgov S. V., Khoromskij B. N., Oseledets I. V. Fast solution of parabolic problems inthe tensor train/quantized tensor train format with initial application to the Fokker-Planckequation // SIAM J. Sci. Comput. 2012. Т. 34, № 6. С. A3016–A3038.166. Neittaanmäki P., Repin S. Guaranteed error bounds for conforming approximations of aMaxwell type problem // Applied and numerical partial differential equations. New York:Springer, 2010.
Т. 15. С. 199–211.167. Carstensen C., Sauter S. A. A posteriori error analysis for elliptic PDEs on domains withcomplicated structures // Numer. Math. 2004. Т. 96, № 4. С. 691–721.168. Acosta G., Durán R. G. An optimal Poincaré inequality in L1 for convex domains // Adv.Numer. Anal. 2009. С. Art. ID 164519, 15.169. Chua S.-K., Wheeden R. L. Estimates of best constants for weighted Poincaré inequalitieson convex domains // Proc. London Math. Soc. (3).
2006. Т. 93, № 1. С. 197–226.170. Fuchs M. Computable upper bounds for the constants in Poincaré-type inequalities for fieldsof bounded deformation // Math. Methods Appl. Sci. 2011. Т. 34, № 15. С. 1920–1932.171. Brezzi F., Fortin M. Mixed and hybrid finite element methods. New York: Springer-Verlag,1991. Т. 15.172. Klawonn A., Rheinbach O., Widlund O. B.
An analysis of a FETI-DP algorithm on irregularsubdomains in the plane // SIAM J. Numer. Anal. 2008. Т. 46, № 5. С. 2484–2504.173. Dohrmann C. R., Klawonn A., Widlund O. B. Domain decomposition for less regularsubdomains: overlapping Schwarz in two dimensions // SIAM J. Numer. Anal. 2008. Т. 46,№ 4. С. 2153–2168.140174. Toselli A., Widlund O. Domain decomposition methods—algorithms and theory. SpringerVerlag, Berlin, 2005. Т. 34. С. xvi+450.175. Pauly D. On Maxwell’s and Poincaré’s constants // Discrete Contin. Dyn.
Syst. Ser. S. 2015.Т. 8, № 3. С. 607–618.176. Carstensen C., Gedicke J. Guaranteed lower bounds for eigenvalues // Math. Comp. 2014.Т. 83, № 290. С. 2605–2629.177. Liu X., Oishi S. Guaranteed high-precision estimation for P0 interpolation constants ontriangular finite elements // Jpn. J. Ind. Appl. Math. 2013. Т. 30, № 3. С. 635–652.178. MATLAB MathWorks, for Technical Computing Simulink.
MathWorks. Products andServices. 2015. URL: http://se.mathworks.com/products/.179. McCartin B. J. Eigenstructure of the equilateral triangle. II. The Neumann problem // Math.Probl. Eng. 2002. Т. 8, № 6. С. 517–539.180. Nevanlinna O. Remarks on Picard–Lindelöf iteration Part I // Springer, BIT NumericalMathematics. 1989. Т. 29, № 2. С. 328–346.181. Nevanlinna O. Remarks on Picard–Lindelöf iteration Part II // Springer, BIT NumericalMathematics.















