Главная » Просмотр файлов » Автореферат

Автореферат (1149222)

Файл №1149222 Автореферат (Абстрактное кодифференциальное исчисление в нормированных пространствах и его приложения к негладкой оптимизации)Автореферат (1149222)2019-06-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

САНКТ–ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТНа правах рукописиДолгополик Максим ВладимировичАБСТРАКТНОЕ КОДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕВ НОРМИРОВАННЫХ ПРОСТРАНСТВАХ И ЕГОПРИЛОЖЕНИЯ К НЕГЛАДКОЙ ОПТИМИЗАЦИИ01.01.09 — дискретная математика и математическая кибернетикаАВТОРЕФЕРАТдиссертации на соискание учёной степеникандидата физико-математических наукСанкт–Петербург2014Работа выполнена в Санкт–Петербургском государственном университете.Научный руководитель:доктор физико–математических наук,профессор Демьянов Владимир ФёдоровичОфициальные оппоненты:Ерохин Владимир Иванович,доктор физико–математических наук, профессорСанкт–Петербургский государственныйтехнологический институт (технический университет),заведующий кафедройинноватики и информационных технологийКулагин Виктор Васильевич,кандидат физико–математических наукИнститут проблем машиноведения РАН,старший научный сотрудникВедущая организация:Саратовский государственный университетимени Н.Г.

ЧернышевскогоЗащита состоится “24” сентября 2014 г. в 16 часов на заседании диссертационного советаД.212.232.29 по защите докторских и кандидатских диссертаций при Санкт–Петербургскомгосударственном университете по адресу: 199178, Санкт–Петербург, 10 линия В.О., д. 33/35,ауд. 74.С диссертацией можно ознакомиться в библиотеке им. А.М. Горького Санкт–Петербургскогогосударственного университета по адресу: 199034, Санкт–Петербург, Университетскаянаб., д.

7/9 и на сайте http://spbu.ru/science/disser/dissertatsii-dopushchennye-k-zashchite-isvedeniya-o-zashchite.Автореферат разослан “”2014 года.Ученый секретарь диссертационного советадоктор физ.–мат. наук, профессорНежинский В.М.ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫАктуальность темы исследования. Негладкий анализ, как раздел математики,изучающий недифференцируемые функции, в первую очередь в связи с теорией негладких экстремальных задач, сформировался во второй половине XX века под влиянием работВ.Ф. Демьянова, А.М. Рубинова, Н.З.

Шора, Б.Н. Пшеничного, А.Д. Иоффе, Ф. Кларка,Дж. Варги и многих других авторов. Основными инструментами исследования в негладкоманализе являются производная по направлениям и субдифференциал, а также их многочисленные обобщения, такие как верхняя и нижняя производные Кларка, субдифференциалКларка, проксимальный субдифференциал и субдифференциал Мишеля–Пено. Общим свойством всех обобщений понятий производной по направлениям и субдифференциала являетсятот факт, что все они определяют некоторую положительно однородную аппроксимациюприращения функции. Одним из наиболее продуктивных методов исследования производных по направлениям негладких функций является метод, основанный на понятии экзостера, поскольку данный метод позволяет выражать удобным образом условия экстремуманегладкой функции, а также строить направления спуска и подъёма данной функции.

Однако, в негладком случае производная по направлениям, как и её обобщения, не являетсянепрерывной функцией точки, что существенно затрудняет построение эффективных численных методов решения негладких оптимизационных задач. Поэтому В.Ф. Демьянов ввёлпонятие кодифференцируемой функции и кодифференциала с помощью которого строитсянеоднородная аппроксимация приращения негладкой функции. Для очень широкого класса негладких функций кодифференциальное отображение является непрерывным в метрикеХаусдорфа, что позволяет строить эффективные методы недифференцируемой оптимизациина основе понятия кодифференциала. Отметим здесь замечательное свойство метода кодифференциального спуска “обходить” некоторые точки локального минимума, существенно отличающее данный метод от других методов гладкой и негладкой оптимизации.

Ещё однимпреимуществом подхода, основанного на кодифференцируемости, является наличие удобногоисчисления кодифференцируемых функций, построенного В.Ф. Демьяновым и А.М. Рубиновым, в то время как для большинства обобщений понятий субдифференциала и производнойпо направлениям не существует полноценного исчисления. Дальнейшим обобщением понятиякодифференциала является понятие верхнего и нижнего коэкзостера, с помощью котороготакже определяется неоднородная аппроксимация приращения функции.Одной из актуальных задач, стоящих в настоящее время, является дальнейшее развитие теории неоднородных аппроксимаций негладких функций, как одного из наиболее эф3фективных инструментов исследования негладких задач.Целью диссертации является построение общей теории неоднородных аппроксимаций негладких функций на основе идей абстрактного выпуклого анализа, развитие теориикодифференцируемости и неоднородных выпуклых аппроксимаций в нормированных пространствах, а также их применение к исследованию различных экстремальных задач.Теоретическая значимость работы состоит в том, что в ней развивается общая теория аппроксимаций негладких функций, позволяющая решать различные негладкие экстремальные задачи.

В диссертации строится исчисление абстрактных выпуклых аппроксимаций негладких функций, впервые приводятся многочисленные свойства кодифференцируемых функций, а также детально изучается метод кодифференциального спуска и развивается аппарат исчерпывающих семейств неоднородных выпуклых аппроксимаций, являющийсяудобным инструментом исследования различных оптимизационных задач.Практическая значимость работы определяется тем, что в ней разработан общийподход к построению различных аппроксимаций негладких функций и изучению различныхэкстремальных задач с ограничениями. Кроме того, в диссертации подробно изучены методкодифференциального спуска и метод спуска, основанный на неоднородных выпуклых аппроксимациях, позволяющие эффективно решать негладкие экстремальные задачи и строитьновые численные методы решения гладких оптимизационных задач с ограничениями. Такжев диссертации приведены различные приложения к задачам вариационного исчисления.Научная новизна.

Все основные научные результаты диссертации являются новыми.Методы исследования. В диссертации применяются современные методы теорииэкстремальных задач, негладкого анализа и недифференцируемой оптимизации.Основные результаты, полученные в диссертации и выносимые на защиту:• построено исчисление абстрактных выпуклых аппроксимаций негладких функций;• получены необходимые условия экстремума негладких функций в терминах абстрактных выпуклых аппроксимаций;• на основе абстрактных выпуклых аппроксимаций указана связь между квазидифференциалом, экзостером, кодифференциалом и коэкзостером;• понятия кодифференцируемости и коэкзостера обобщены на случай функций, определённых на нормированном пространстве;• получены многочисленные новые свойства кодифференцируемых функций;4• обобщён и подробно изучен метод кодифференциального спуска;• построено исчисление исчерпывающих семейств неоднородных верхних выпуклых инижних вогнутых аппроксимаций негладких функций;• построен и изучен метод спуска, основанный на неоднородных верхних выпуклых аппроксимациях;• выведены необходимые условия экстремума в некоторых негладких задачах вариационного исчисления.Апробация работы.

Результаты, изложенные в диссертации, докладывались и обсуждались на Всероссийской конференции “Устойчивость и процессы управления”, посвящённой 80-ти летию со дня рождения В. И. Зубова (г. Санкт–Петербург, 1–2 июля, 2010 г.), международной конференции “Конструктивный негладкий анализ и смежные вопросы (CNSA2012)” (г. Санкт–Петербург, 18–23 июня 2012 г), международной конференции “Обратные инекорректные задачи математической физики” (г. Новосибирск, 5–12 августа, 2012 г), 17 Саратовской зимней школе “Современные проблемы теории функций и их приложения” (г.

Саратов, 27 января – 3 февраля, 2014 г.), XLI и XLII международных научных конференцияхаспирантов и студентов “Процессы управления и устойчивость” (г. Санкт–Петербург, 5–8 апреля, 2010 г., 4–7 апреля, 2011 г.) и семинаре по дискретному гармоническому анализу игеометрическому моделированию (математико — механический факультет, СПбГУ).Публикации. По результатам исследований опубликовано 8 печатных работ, из которых две в соавторстве и две в изданиях, рекомендуемых ВАК.Работы [2, 8] написаны в соавторстве.

В работе [2] автору принадлежит доказательствоосновных результатов, В.Ф. Демьянову — общая постановка задач, идея метода кодифференциального спуска и идея приложения теории кодифференцируемых функций и теорииточных штрафных функций к исследованию задач вариационного исчисления. В работе [8]автору принадлежит доказательство основного результата об эквивалентности методов наискорейшего и гиподифференциального спусков, Г.Ш.

Тамасяну — общая постановка задачи.Структура и объем диссертации. Диссертация состоит из Введения, пяти глав, заключения, списка обозначений и списка литературы. Определения, предложения, теоремы,леммы, следствия, примеры и замечания нумеруются в соответствии с главой, параграфом,в которых они находятся. Формулы нумеруются в соответствии с главой, в которой онинаходятся. Объём работы составляет 140 страниц.

Список литературы включает 128 наименований.5СОДЕРЖАНИЕ РАБОТЫВо Введении приводится обзор литературы по теме работы, обсуждается актуальность исследования, его теоретическая и практическая ценность, научная новизна.В первой главе приведены основные определения и результаты из топологии, функционального анализа, выпуклого анализа, теории многозначных отображений и негладкого анализа, используемые в следующих главах.

Характеристики

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов диссертации

Абстрактное кодифференциальное исчисление в нормированных пространствах и его приложения к негладкой оптимизации
Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее