Диссертация (1145906), страница 21
Текст из файла (страница 21)
Т. 146. № 3. С.448–61.93. Inagaki Y., Doolittle F. Evolution of the eukaryotic translation termination system: origins ofrelease factors // Mol. Biol. Evol. 2000. Т. 17. № 6. С. 882–9.94. Inge-Vechtomov S., Zhouravleva G., Philippe M. Eukaryotic release factors (eRFs) history //Biol. Cell. 2003. Т. 95. С. 195–209.95.
Inoue Y., Kishimoto A., Hirao J., Yoshida M., Taguchi H. Strong growth polarity of yeast prionfiber revealed by single fiber imaging // J. Biol. Chem. 2001. Т. 276. № 38. С. 35227–30.96. Jorda J., Kajava A. V. T-REKS: identification of Tandem REpeats in sequences with a K-meanSbased algorithm // Bioinformatics. 2009. Т. 25. № 20. С. 2632–8.97. Jorgensen P., Rupes I., Sharom J.R., Schneper L., Broach J.R., Tyers M.
A dynamictranscriptional network communicates growth potential to ribosome synthesis and critical cell size //Genes Dev. 2004. Т. 18. С. 2491–505.98. Kabani M., Cosnier B., Bousset L., Rousset J.-P., Melki R., Fabret C. A mutation within the Cterminal domain of Sup35p that affects [PSI+] prion propagation // Mol. Microbiol. 2011. Т. 81. № 3.С. 640–58.99. Kaiser C., Michaelis S., Mitchell A. Methods in yeast genetics.
NY: Cold Spring Harbourlaboratory press, 1994.100. Kajava A. V., Baxa U., Wickner R.B., Steven A.C. A model for Ure2p prion filaments and otheramyloids: the parallel superpleated beta-structure // Proc. Natl. Acad. Sci. U. S. A. 2004. Т. 101. №21. С. 7885–7890.101. Kenney J.M., Knight D., Wise M.J., Vollrath F.
Amyloidogenic nature of spider silk // Eur. J.Biochem. 2002. Т. 269. № 16. С. 4159–4163.102. Kiktev D., Patterson, J C., Muller S., Baria B., Pan T., Chernoff Y.O. Regulation of chaperoneeffects on a yeast prion by cochaperone Stg2 // MCB. 2012. Т. 12. № 40.111103. King C.-Y., Wang H.-L., Chang H.-Y. Transformation of yeast by infectious prion particles //Methods. 2006.
Т. 39. № 1. С. 68–71.104. King C., Diaz-Avalos R. Protein-only transmission of three yeast prion strains // Nature. 2004.Т. 428. № 6980. С. 319–23.105. King C.Y. Supporting the structural basis of prion strains: induction and identification of [PSI]variants // J. Mol.
Biol. 2001. Т. 307. № 5. С. 1247–60.106. King C.Y., Tittmann P., Gross H., Gebert R., Aebi M., Wüthrich K. Prion-inducing domain 2114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments // Proc. Natl. Acad. Sci. U.S. A. 1997. Т. 94. № 13. С. 6618–22.107. Kirkland P.A., Reidy M., Masison D.C. Functions of yeast Hsp40 chaperone Sis1p dispensablefor prion propagation but important for prion curing and protection from prion toxicity // Genetics.2011. Т. 188. № 3.
С. 565–77.108. Kishimoto A., Hasegawa K., Suzuki H., Taguchi H., Namba K., Yoshida M. β-helix is a likelycore structure of yeast prion Sup35 amyloid fibers // Biochem. Biophys. Res. Commun. 2004. Т. 315.№ 3. С. 739–45.109. Klatzo I., Gajducek D.C., Zigas V. Pathology of Kuru // Lab.
Invest. 1976. Т. 8. № 4. С. 799–847.110. Kochneva-Pervukhova N. V, Chechenova M.B., Valouev I.A., Kushnirov V. V., Smirnov V.N.,Ter-Avanesyan M.D. [PSI(+)] prion generation in yeast: characterization of the “strain” difference //Yeast. 2001. Т. 18. № 6. С. 489–97.111. Kochneva-Pervukhova N.
V, Paushkin S. V, Kushnirov V. V., Cox B.S., Tuite M.F., TerAvanesyan M.D. Mechanism of inhibition of PSI+ prion determinant propagation by a mutation ofthe N-terminus of the yeast Sup35 protein // EMBO J. 1998a. Т. 17. № 19. С. 5805–10.112. Kochneva-Pervukhova N. V, Poznyakovski A.
I., Smirnov V.N., Ter-Avanesyan M.D. Cterminal truncation of the Sup35 protein increases the frequency of de novo generation of a prionbased [PSI+] determinant in Saccharomyces cerevisiae // Curr. Genet. 1998b. Т. 34. № 2. С. 146–51.113. Krishnan R., Lindquist S.L. Structural insights into a yeast prion illuminate nucleation andstrain diversity // Nature. 2005. Т. 435. № 7043. С. 765–772.114. Kryndushkin D.S., Alexandrov I.M., Ter-Avanesyan M.D., Kushnirov V.
V. Yeast [PSI+] prionaggregates are formed by small Sup35 polymers fragmented by Hsp104 // J. Biol. Chem. 2003. Т.278. № 49. С. 49636–49643.115. Kryndushkin D.S., Smirnov V.N., Ter-Avanesyan M.D., Kushnirov V. V. Increased expressionof Hsp40 chaperones, transcriptional factors, and ribosomal protein Rpp0 can cure yeast prions // J.Biol.
Chem. 2002. Т. 277. № 26. С. 23702–8.116. Kurahashi H., Pack C.-G., Shibata S., Oishi K., Sako Y., Nakamura Y. [PSI(+)] aggregateenlargement in rnq1 nonprion domain mutants, leading to a loss of prion in yeast // Genes Cells.2011. Т. 16. № 5. С. 576–89.117. Kurahashi H., Shibata S., Ishiwata M., Nakamura Y. Selfish prion of Rnq1 mutant in yeast //Genes Cells. 2009. Т.
14. № 5. С. 659–68.118. Kushnirov V. V., Alexandrov I.M., Mitkevich O. V, Shkundina I.S., Ter-Avanesyan M.D.Purification and analysis of prion and amyloid aggregates // Methods. 2006. Т. 39. № 1. С. 50–5.119. Kushnirov V. V., Kochneva-Pervukhova N. V, Chechenova M.B., Frolova N.S., Ter-AvanesyanM.D.
Prion properties of the Sup35 protein of yeast Pichia methanolica // EMBO J. 2000a. Т. 19. №3. С. 324–31.112120. Kushnirov V. V., Kryndushkin D.S., Boguta M., Smirnov V.N., Ter-Avanesyan M.D.Chaperones that cure yeast artificial [PSI+] and their prion-specific effects // Curr. Biol. 2000b. Т. 10.№ 22. С. 1443–6.121. Kushnirov V.
V., Ter-Avanesyan M.D., Didichenko S.A., Smirnov V.N., Chernoff Y.O.,Derkach I.L., Novikova O.N., Inge-Vechtomov S.G., Neistat M.A., Tolstorukov I.I. Divergence andconservation of SUP2 (SUP35) gene of yeast Pichia pinus and Saccharomyces cerevisiae // Yeast.1990. Т. 6. № 6. С. 461–72.122. Kushnirov V. V., Vishnevskaya A.B., Alexandrov I.M., Ter-Avanesyan M.D.
Prion andnonprion amyloids: a comparison inspired by the yeast Sup35 protein // Prion. 2007. Т. 1. № 3. С.179–84.123. Kushnirov V. V., Ter-Avanesyan M.D. Structure and Replication of Yeast Prions // Cell. 1998.Т. 94. № 1. С. 13–16.124. Kushnirov V. V., Ter-Avanesyan M.D., Telckov M. V., Surguchov A.P., Smirnov V.N., IngeVechtomov S.G. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae //Gene. 1988. Т. 66.
№ 1. С. 45–54.125. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank forrapid transfer of proteins from polyacrylamide to nitrocellulose // J. Biochem. Biophys. Methods.1984. Т. 10. № 3-4. С. 203–9.126. Lacroute F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast // J.Bacteriol. 1971. Т. 106. № 2. С. 519–22.127. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophageT4 // Nature. 1970. Т. 227. № 5259. С. 680–5.128. Lancaster A.K., Bardill J.P., True H.L., Masel J. The spontaneous appearance rate of the yeastprion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+]system // Genetics.
2010. Т. 184. № 2. С. 393–400.129. Laplanche J.L., Chatelain J., Launay J.M., Gazengel C., Vidaud M. Deletion in prion proteingene in a Moroccan family // Nucleic Acids Res. 1990. Т. 18. № 22. С. 6745.130. Li J., Browning S., Mahal S.P., Oelschlegel A.M., Weissmann C. Darwinian evolution of prionsin cell culture // Science.
2010. Т. 327. № 5967. С. 869–72.131. Liebman S.W., Chernoff Y.O. Prions in yeast // Genetics. 2012. Т. 191. № 4. С. 1041–72.132. Liebman S.W., Sherman F. Extrachromosomal psi+ determinant suppresses nonsense mutationsin yeast // J. Bacteriol. 1979. Т. 139. № 3. С. 1068–71.133. Lin J.-Y., Liao T.-Y., Lee H.-C., King C.-Y.
inter-allelic prion propagation revealsconformational relationships among a multitude of [PSI] strains // PLoS Genet. 2011. Т. 7. № 9. С.e1002297.134. Liu B., Larsson L., Caballero A., Hao X., Oling D., Grantham J., Nyström T. The polarisome isrequired for segregation and retrograde transport of protein aggregates // Cell. 2010. Т. 140. № 2. С.257–67.135. Liu J.-J., Sondheimer N., Lindquist S.L. Changes in the middle region of Sup35 profoundlyalter the nature of epigenetic inheritance for the yeast prion [PSI+] // Proc. Natl. Acad.
Sci. U. S. A.2002. Т. 99 Suppl 4. С. 16446–53.136. Liu J.J., Lindquist S. Oligopeptide-repeat expansions modulate “protein-only” inheritance inyeast // Nature. 1999. Т. 400. № 6744. С. 573–6.137. Maji S.K., Perrin M.H., Sawaya M.R., Jessberger S., Vadodaria K., Rissman R. A., Singru P.S.,113Nilsson K.P.R., Simon R., Schubert D., Eisenberg D., Rivier J., Sawchenko P., Vale W., Riek R.Functional amyloids as natural storage of peptide hormones in pituitary secretory granules // Science.2009. Т. 325.
№ 5938. С. 328–32.138. Majumdar A., Cesario W.C., White-Grindley E., Jiang H., Ren F., Khan M.R., Li L., ChoiE.M.-L., Kannan K., Guo F., Unruh J., Slaughter B., Si K. Critical role of amyloid-like oligomers ofdrosophila orb2 in the persistence of memory // Cell. 2012. Т. 148. № 3. С. 515–529.139.
Manogaran A.L., Hong J.Y., Hufana J., Tyedmers J., Lindquist S., Liebman S.W. Prionformation and polyglutamine aggregation are controlled by two classes of genes // PLoS Genet.2011. Т. 7. № 5. С. e1001386.140. Marcelino-Cruz A.M., Bhattacharya M., Anselmo A.C., Tessier P.M. Site-specific structuralanalysis of a yeast prion strain with species-specific seeding activity // Prion. 2011.
Т. 5. № 3. С.208–14.141. Marchante R., Rowe M., Zenthon J., Howard M.J., Tuite M.F. Structural definition is importantfor the propagation of the yeast [PSI+] prion // Mol. Cell. 2013. Т. 50. № 5. С. 675–85.142. Mathur V., Taneja V., Sun Y., Liebman S.W. Analyzing the birth and propagation of two distinctprions, [PSI+] and [ Het-s ] y , in Yeast // 2010. Т. 21. С. 1449–1461.143.
McCready S.J., Cox B.S., McLaughlin C.S. The extrachromosomal control of nonsensesuppression in yeast: an analysis of the elimination of [psi+] in the presence of a nuclear gene PNM //Mol. Gen. Genet. 1977. Т. 150. № 3. С. 265–70.144. McGlinchey R.P., Kryndushkin D., Wickner R.B. Suicidal [PSI+] is a lethal yeast prion // Proc.Natl. Acad. Sci. U. S. A. 2011. Т. 108. № 13. С. 5337–41.145. Nakayashiki T., Kurtzman C.P., Edskes H.K., Wickner R.B. Yeast prions [URE3] and [PSI+] arediseases // Proc.
Natl. Acad. Sci. U. S. A. 2005. Т. 102. № 30. С. 10575–80.146. Nelson R., Sawaya M.R., Balbirnie M., Madsen A.O., Riekel C., Grothe R., Eisenberg D.Structure of the cross-beta spine of amyloid-like fibrils // Nature. 2005. Т. 435. № 7043. С. 773–8.147. Nevzglyadova O.















