Диссертация (1144318), страница 8
Текст из файла (страница 8)
Resonance, oscillation and the intrinsic frequencypreferences of neurons // Trends in Neurosciences. 2000. Vol. 23, № 5. P. 216–222.2.Pike F.G. et al. Distinct frequency preferences of different types of rathippocampal neurones in response to oscillatory input currents // J. Physiol.2000. Vol. 529, № 1. P. 205–213.3.Somogyi P., Klausberger T. Defined types of cortical interneurone structurespace and spike timing in the hippocampus // Journal of Physiology. 2005.
Vol.562, № 1. P. 9–26.4.Callaway E.M., Yuste R. Stimulating neurons with light // Current Opinion inNeurobiology. 2002. Vol. 12, № 5. P. 587–592.5.Miesenböck G. Genetic methods for illuminating the function of neural circuits// Curr Opin Neurobiol. 2004. Vol. 14, № 3. P. 395–402.6.Nagel G. et al. Channelrhodopsin-1: A light-gated proton channel in green algae// Science (80-. ). 2002. Vol. 296, № 5577. P. 2395–2398.7.Nagel G. et al.
Channelrhodopsin-2, a directly light-gated cation-selectivemembrane channel // Proc. Natl. Acad. Sci. 2003. Vol. 100, № 24. P. 13940–13945.8.Boyden E.S. et al. Millisecond-timescale, genetically targeted optical control ofneural activity // Nat. Neurosci. 2005. Vol. 8, № 9. P. 1263–1268.9.Liu X. et al.
Optogenetic stimulation of a hippocampal engram activates fearmemory recall // Nature. 2012. Vol. 484, № 7394. P. 381–385.10.Ramirez S., Tonegawa S., Liu X. Identification and optogenetic manipulation ofmemory engrams in the hippocampus // Front. Behav. Neurosci. 2014. Vol. 7.- 71 -11.Hodges J.R., Salmon D.P., Butters N. Differential impairment of semantic andepisodic memory in Alzheimer’s and Huntington’s diseases: A controlledprospective study // J. Neurol. Neurosurg.
Psychiatry. 1990. Vol. 53, № 12. P.1089–1095.12.Vann K.T., Xiong Z.G. Optogenetics for neurodegenerative diseases //International Journal of Physiology, Pathophysiology and Pharmacology. 2016.Vol. 8, № 1. P. 1–8.13.Crick F.H. Thinking about the brain. // Sci. Am. 1979.
Vol. 241, № 3. P. 219–232.14.Mei Y., Zhang F. Molecular tools and approaches for optogenetics // BiologicalPsychiatry. 2012.15.Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purplemembrane of Halobacterium halobium // Nat. New Biol. 1971. Vol. 233, № 39.P. 149–152.16.Watakabe A. et al. Comparative analyses of adeno-associated viral vectorserotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex //Neurosci.
Res. 2015.17.Aschauer D.F., Kreuz S., Rumpel S. Analysis of Transduction Efficiency,Tropism and Axonal Transport of AAV Serotypes 1, 2, 5, 6, 8 and 9 in theMouse Brain // PLoS One. 2013.18.Gradinaru V. et al. Targeting and Readout Strategies for Fast Optical NeuralControl In Vitro and In Vivo // J. Neurosci. 2007. Vol. 27, № 52. P.
14231–14238.19.Adesnik H., Scanziani M. Lateral competition for cortical space by layerspecific horizontal circuits // Nature. 2010. Vol. 464, № 7292. P. 1155–1160.20.Petreanu L. et al. Channelrhodopsin-2-assisted circuit mapping of long-rangecallosal projections // Nat. Neurosci. 2007. Vol. 10, № 5. P. 663–668.- 72 -21.Arenkiel B.R.
et al. In Vivo Light-Induced Activation of Neural Circuitry inTransgenic Mice Expressing Channelrhodopsin-2 // Neuron. 2007. Vol. 54, №2. P. 205–218.22.Zhao S. et al. Improved expression of halorhodopsin for light-induced silencingof neuronal activity // Brain Cell Biol. 2008. Vol. 36, № 1–4. P. 141–154.23.Zhang F. et al. Red-shifted optogenetic excitation: A tool for fast neural controlderived from Volvox carteri // Nat. Neurosci. 2008. Vol. 11, № 6. P.
631–633.24.Gunaydin L.A. et al. Ultrafast optogenetic control // Nat. Neurosci. 2010. Vol.13, № 3. P. 387–392.25.Airan R.D. et al. Temporally precise in vivo control of intracellular signalling //Nature. 2009. Vol. 458, № 7241. P. 1025–1029.26.Adamantidis A.R. et al. Neural substrates of awakening probed with optogeneticcontrol of hypocretin neurons // Nature. 2007. Vol. 450, № 7168. P. 420–424.27.Tsai H.C. et al. Phasic firing in dopaminergic neurons is sufficient forbehavioral conditioning // Science (80-.
). 2009. Vol. 324, № 5930. P. 1080–1084.28.Kravitz A. V. et al. Regulation of parkinsonian motor behaviours by optogeneticcontrol of basal ganglia circuitry // Nature. 2010. Vol. 466, № 7306. P. 622–626.29.Gradinaru V. et al. Optical deconstruction of parkinsonian neural circuitry //Science (80-. ). 2009. Vol. 324, № 5925.
P. 354–359.30.G N. et al. Channelrhodopsins: Visual regeneration and neural activation by alight switch // New Biotechnology. 2013.31.Nagel G. et al. Light activation of Channelrhodopsin-2 in excitable cells ofcaenorhabditis elegans triggers rapid behavioral responses // Curr. Biol. 2005.Vol. 15, № 24. P. 2279–2284.32.Kleinlogel S. et al.
Ultra light-sensitive and fast neuronal activation with the- 73 -Ca2+-permeable channelrhodopsin CatCh // Nat. Neurosci. 2011. Vol. 14, № 4.P. 513–518.33.Zhang Y.P., Oertner T.G. Optical induction of synaptic plasticity using a lightsensitive channel // Nat. Methods. 2007. Vol. 4, № 2. P.
139–141.34.Gradinaru V. et al. Molecular and Cellular Approaches for Diversifying andExtending Optogenetics // Cell. 2010. Vol. 141, № 1. P. 154–165.35.Berndt A. et al. Bi-stable neural state switches // Nat. Neurosci. 2009. Vol. 12,№ 2. P. 229–234.36.Bamann C. et al. Structural guidance of the photocycle of channelrhodopsin-2by an interhelical hydrogen bond // Biochemistry. 2010. Vol. 49, № 2. P. 267–278.37.Diester I. et al. An optogenetic toolbox designed for primates // Nat. Neurosci.2011.
Vol. 14, № 3. P. 387–397.38.Yizhar O. et al. Neocortical excitation/inhibition balance in informationprocessing and social dysfunction // Nature. 2011. Vol. 477, № 7363. P. 171–178.39.Berndt A. et al. High-efficiency channelrhodopsins for fast neuronalstimulation at low light levels // Proc. Natl. Acad. Sci. 2011.
Vol. 108, № 18. P.7595–7600.40.Sato M. et al. Role of putative anion-binding sites in cytoplasmic andextracellularchannelsofNatronomonaspharaonishalorhodopsin//Biochemistry. 2005. Vol. 44, № 12. P. 4775–4784.41.Scharf B., Engelhard M. Blue Halorhodopsin from Natronobacteriumpharaonis: Wavelength Regulation by Anions // Biochemistry. 1994.
Vol. 33, №21. P. 6387–6393.42.Lanyi J.K., Oesterhelt D. Identification of the retinal-binding protein in- 74 -halorhodopsin // J. Biol. Chem. 1982. Vol. 257, № 5. P. 2674–2677.43.Zhang F. et al. Multimodal fast optical interrogation of neural circuitry // Nature.2007. Vol. 446, № 7136. P. 633–639.44.Han X., Boyden E.S. Multilpe-color optical activation, silencing, anddesynchronization of neural activity, with single-spike temporal resolution //PLoS One. 2007. Vol. 2, № 3.45.Gradinaru V., Thompson K.R., Deisseroth K. eNpHR: A Natronomonashalorhodopsin enhanced for optogenetic applications // Brain Cell Biol.
2008.Vol. 36, № 1–4. P. 129–139.46.Sohal V.S. et al. Parvalbumin neurons and gamma rhythms enhance corticalcircuit performance // Nature. 2009. Vol. 459, № 7247. P. 698–702.47.Busskamp V. et al. Genetic reactivation of cone photoreceptors restores visualresponses in retinitis pigmentosa // Science. 2010. Vol. 329, № 5990. P. 413–417.48.Aravanis A.M. et al.
An optical neural interface: in vivo control of rodent motorcortex with integrated fiberoptic and optogenetic technology. // J. Neural Eng.2007. Vol. 4, № 3.49.Li X. et al. Fast noninvasive activation and inhibition of neural and networkactivity by vertebrate rhodopsin and green algae channelrhodopsin // Proc. Natl.Acad. Sci. 2005. Vol. 102, № 49. P. 17816–17821.50.Melyan Z.
et al. Addition of human melanopsin renders mammalian cellsphotoresponsive // Nature. 2005. Vol. 433, № 7027. P. 741–745.51.Kim J.M. et al. Light-driven activation of β2-adrenergic receptor signaling by achimeric rhodopsin containing the β2-adrenergic receptor cytoplasmic loops //Biochemistry. 2005. Vol. 44, № 7. P. 2284–2292.52.Moorman D.E., Aston-Jones G. Optical control of reward // Nature. Nature- 75 -Publishing Group, 2009. Vol. 458. P. 980.53.Bruegmann T.
et al. Optogenetic control of heart muscle in vitro and in vivo //Nat. Methods. 2010. Vol. 7, № 11. P. 897–900.54.Nikolic K. et al. Photocycles of channelrhodopsin-2 // Photochem. Photobiol.2009. Vol. 85, № 1. P. 400–411.55.Hegemann P., Ehlenbeck S., Gradmann D. Multiple photocycles ofchannelrhodopsin // Biophys. J. 2005. Vol. 89, № 6. P. 3911–3918.56.BamannC.etal.SpectralCharacteristicsofthePhotocycleofChannelrhodopsin-2 and Its Implication for Channel Function // J.
Mol. Biol.2008. Vol. 375, № 3. P. 686–694.57.Chen X. et al. Dantrolene is neuroprotective in Huntington’s disease transgenicmouse model // Mol. Neurodegener. 2011. Vol. 6, № 1.58.Jiang M., Chen G. High Ca2+-phosphate transfection efficiency in low-densityneuronal cultures // Nat. Protoc. 2006. Vol. 1, № 2. P.
695–700.59.Ishizuka T. et al. Kinetic evaluation of photosensitivity in geneticallyengineered neurons expressing green algae light-gated channels // Neurosci.Res. 2006. Vol. 54, № 2. P. 85–94.60.Grossman N. et al. The spatial pattern of light determines the kinetics andmodulates backpropagation of optogenetic action potentials // J. Comput.Neurosci. 2013. Vol. 34, № 3.
P. 477–488.61.Halling D.B., Aracena-Parks P., Hamilton S.L. Regulation of voltage-gated Ca2+channels by calmodulin. // Science’s STKE : signal transduction knowledgeenvironment. 2006. Vol. 2006, № 318.62.Catterall W. a. Structure and regulation of voltage-gated Ca2+ channels. // AnnuRev Cell Dev Biol. 2000. Vol. 16. P. 521–555.- 76 -63.Wang R. et al. Presenilin 1 familial Alzheimer’s disease mutation leads todefective associative learning and impaired adult neurogenesis // Neuroscience.2004. Vol. 126, № 2. P. 305–312.64.Sun X. et al. Hippocampal spatial memory impairments caused by the familialAlzheimer’s disease-linked presenilin 1 M146V mutation // Neurodegener.















