Диссертация (1137263), страница 17
Текст из файла (страница 17)
Bauman K. E., Kornetova A. N., Topinskii V. A., Khakimova D. A.Optimization of click-through rate prediction in the Yandex searchengine //Automatic Documentation and Mathematical Linguistics. –2013. – V. 47. – №. 2. – P. 52-58.13. Briggs R., Hollis N. Advertising on the web: is there response beforeclick-through? //Journal of Advertising Research. – 1997. – V. 37.
– P.33-46.14. Broder A. Z., Ciccolo P., Fontoura M., Gabrilovich E., Josifovski V.,Riedel L. Search advertising using web relevance feedback//Proceedings of the 17th ACM conference on Information andknowledge management. – ACM, 2008. – P.
1013-1022.15. Brooks N., Magun H. Navigational behaviour and sponsored searchadvertising //International Journal of Electronic Business. – 2008. – V.6. – №. 2. – P. 132-148.16. Chakrabarti D., Agarwal D., Josifovski V. Contextual advertising bycombining relevance with click feedback //Proceedings of the 17thinternational conference on World Wide Web. – ACM, 2008. – P. 417426.17. Chen Y., Kapralov M., Pavlov D., Canny J. Factor Modeling forAdvertisement Targeting //NIPS. – 2009. – V.
9. – P. 324-332.18. Cheng H., Cantu-Paz E. Personalized click prediction in sponsoredsearch //Proceedings of the third ACM international conference on Websearch and data mining. – ACM, 2010. – P. 351-360.12819. Chervonenkis A., Sorokina A., Topinsky V. A.
Optimization of adsallocation in sponsored search //Proceedings of the 22nd internationalconference on World Wide Web companion. – International World WideWeb Conferences Steering Committee, 2013. – P. 121-122.20. Chu W., Zinkevich M., Li L., Thomas A., Tseng, B. Unbiased onlineactive learning in data streams //Proceedings of the 17th ACM SIGKDDinternational conference on Knowledge discovery and data mining.
–ACM, 2011. – P. 195-203.21. Ciaramita M., Murdock V., Plachouras V. Online learning from clickdata for sponsored search //Proceedings of the 17th internationalconference on World Wide Web. – ACM, 2008. – P. 227-236.22. Clark D. Start-up plans Internet search service tying results to advertisingspending //The Wall Street Journal. – 1998.23. Craswell N., Zoeter O., Taylor M., Ramsey B.An experimentalcomparison of click position-bias models //Proceedings of the 2008International Conference on Web Search and Data Mining.
– ACM,2008. – P. 87-94.24. Crook T., Frasca B., Kohavi R., Longbotham R. Seven pitfalls to avoidwhen running controlled experiments on the web //Proceedings of the15th ACM SIGKDD international conference on Knowledge discoveryand data mining. – ACM, 2009. – P. 1105-1114.25. De Filippi G. Keywords auto-segmentation and auto-allocation systemto increase search engines income. Patent Application 11/382,276 USA.– 2006.26.
Dean J., Ghemawat S. MapReduce: simplified data processing on largeclusters //Communications of the ACM. – 2008. – V. 51. – №. 1. – P.107-113.27. Dembczynski K., Kotlowski W., Weiss D. Predicting ads' click-throughrate with decision rules ranking //Online Advertising. – 2008.12928. Dudley B. Microsoft Touts Ad-Selling System as Step Ahead of itsCompetitors //Seattle Times. – 2005.29. Edelman B., Ostrovsky M., Schwarz M.
Internet advertising and thegeneralized second price auction: Selling billions of dollars worth ofkeywords. – National Bureau of Economic Research, 2005. – №.w11765.30. Fain D. C., Pedersen J. O. Sponsored search: A brief history //Bulletin ofthe American Society for Information Science and Technology. – 2006.– V.
32. – №. 2. – P. 12-13.31. Feng J., Bhargava H. K., Pennock D. Comparison of allocation rules forpaid placement advertising in search engines //Proceedings of the 5thinternational conference on Electronic commerce. – ACM, 2003. – P.294-299.32.
Feng J., Bhargava H. K., Pennock D. M. Implementing sponsored searchin web search engines: Computational evaluation of alternativemechanisms //INFORMS Journal on Computing. – 2007. – V. 19. – №.1. – P. 137-148.33. Ghose A., Yang S. An empirical analysis of search engine advertising:Sponsored search in electronic markets //Management Science.
– 2009.– V. 55. – №. 10. – P. 1605-1622.34. Graepel T., Candela J. Q., Borchert T., Herbrich R. Web-scale bayesianclick-through rate prediction for sponsored search advertising inmicrosoft's bing search engine //Proceedings of the 27th InternationalConference on Machine Learning (ICML-10). – 2010. – P. 13-20.35. Granka L. A., Joachims T., Gay G.
Eye-tracking analysis of userbehavior in WWW search //Proceedings of the 27th annual internationalACM SIGIR conference on Research and development in informationretrieval. – ACM, 2004. – P. 478-479.13036. Green D. The evolution of Web searching //Online Information Review.– 2000.
– V. 24. – №. 2. – P. 124-137.37. Gupta S., Bilenko M., Richardson M. Catching the drift: learning broadmatches from clickthrough data //Proceedings of the 15th ACMSIGKDD international conference on Knowledge discovery and datamining. – ACM, 2009. – P. 1165-1174.38. Herbrich R., Graepel T., Obermayer K. Large margin rank boundariesfor ordinal regression //Advances in Neural Information ProcessingSystems. – 1999. – P. 115-132.39. Hillard D., Schroedl S., Manavoglu E., Raghavan H., Leggetter, C.Improving ad relevance in sponsored search //Proceedings of the thirdACM international conference on Web search and data mining.
– ACM,2010. – P. 361-370.40. Jansen B. J., Mullen T. Sponsored search: an overview of the concept,history, and technology //International Journal of Electronic Business. –2008. – V. 6. – №. 2. – P. 114-131.41. Jansen B. J., Sobel K., Zhang M. The brand effect of key phrases andadvertisements in sponsored search //International Journal of ElectronicCommerce. – 2011. – V. 16. – №. 1. – P. 77-106.42. Joachims T., Granka L., Pan B., Hembrooke H., Gay G.
Accuratelyinterpreting clickthrough data as implicit feedback //Proceedings of the28th annual international ACM SIGIR conference on Research anddevelopment in information retrieval. – ACM, 2005. – P. 154-161.43. Joachims T. Optimizing search engines using clickthrough data//Proceedings of the eighth ACM SIGKDD international conference onKnowledge discovery and data mining. – ACM, 2002.
– P. 133-142.44. Kohavi R., Crook T., Longbotham R., Frasca B., Henne R., Ferres J. L.,Melamed T. Online experimentation at Microsoft //Data Mining CaseStudies. – 2009. – P. 11.13145. Kuhn H. W. The Hungarian method for the assignment problem //Navalresearch logistics quarterly. – 1955. – V. 2. – №. 1. – P. 83-97.46. Lacerda A., Cristo M., Gonçalves M. A., Fan W., Ziviani N., RibeiroNeto B.Learning to advertise //Proceedings of the 29th annualinternational ACM SIGIR conference on Research and development ininformation retrieval. – ACM, 2006.
– P. 549-556.47. Lahaie S., Pennock D. M. Revenue analysis of a family of ranking rulesfor keyword auctions //Proceedings of the 8th ACM conference onElectronic commerce. – ACM, 2007. – P. 50-56.48. Lee K., Seda C. Search engine advertising: buying your way to the topto increase sales. – New Riders, 2009.49. Liu T. Y., Xu J., Qin T., Xiong W., Li H.
Letor: Benchmark dataset forresearch on learning to rank for information retrieval //Proceedings ofSIGIR 2007 workshop on learning to rank for information retrieval. –2007. – P. 3-10.50. Mehta A., Saberi A., Vazirani U., Vazirani V. Adwords and generalizedonline matching //Journal of the ACM (JACM). – 2007. – V. 54. – №. 5.– P. 22.51. Pin F., Key P. Stochastic variability in sponsored search auctions:observations and models //Proceedings of the 12th ACM conference onElectronic commerce.
– ACM, 2011. – P. 61-70.52. Radlinski F., Broder A., Ciccolo P., Gabrilovich E., Josifovski V., RiedelL. Optimizing relevance and revenue in ad search: a query substitutionapproach //Proceedings of the 31st annual international ACM SIGIRconference on Research and development in information retrieval. –ACM, 2008. – P.
403-410.53. Regelson M., Fain D. Predicting click-through rate using keywordclusters //Proceedings of the Second Workshop on Sponsored SearchAuctions. – 2006. – V. 9623.13254. Reiley D. H., Li S. M., Lewis R. A. Northern exposure: A fieldexperiment measuring externalities between search advertisements//Proceedings of the 11th ACM conference on Electronic commerce. –ACM, 2010. – P.
297-304.55. Richardson M., Dominowska E., Ragno R. Predicting clicks: estimatingthe click-through rate for new ads //Proceedings of the 16th internationalconference on World Wide Web. – ACM, 2007. – P. 521-530.56. Rusmevichientong P., Williamson D. P. An adaptive algorithm forselecting profitable keywords for search-based advertising services//Proceedings of the 7th ACM Conference on Electronic Commerce. –ACM, 2006. – P. 260-269.57. Schroedl S., Kesari A., Neumeyer L. Personalized ad placement in websearch //Proceedings of the 4th Annual International Workshop on DataMining and Audience Intelligence for Online Advertising (AdKDD),Washington USA. – 2010.58. Sheth A., Avant D., Bertram C. System and method for creating asemantic web and its applications in browsing, searching, profiling,personalization and advertising.