Диссертация (1137096), страница 54
Текст из файла (страница 54)
get ( i ) , i ) ;}person . setEnvironment ( t h i s ) ;f o r ( i n t i = 0 ; i < p e r s o n . s i z e ( ) ; i ++ ) {setupParameters_person_xjal ( person . get ( i ) , i ) ;c re at e_ pe rs on _xj al ( person . get ( i ) , i ) ;}s e t u p I n i t i a l C o n d i t i o n s _ x j a l ( Main . c l a s s ) ;i f ( i s T o p L e v e l C l a s s _ x j a l ( Main .
c l a s s ) ) {onCreate () ;}6895690069056910}6915692069256930@ O v er r i d e@ A n y Lo g i cI n t er n al Co d eg en A P Ip u b l i c void s t a r t ( ) {super . s t a r t () ;start . start () ;line_clean . s t a rt () ;coordinates . s t a r t () ;pause .
s t a r t ( ) ;_plot_st_autoUpdateEvent_xjal . s t a r t () ;_plot_saved_autoUpdateEvent_xjal . s t a r t () ;_autoCreatedDS_xjal . s t a r t ( ) ;f o r ( A g en t em b ed d ed O b j ect : e x p l o s i o n ) {em b ed d ed O b j ect . s t a r t ( ) ;}f o r ( A g en t em b ed d ed O b j ect : p e r s o n ) {em b ed d ed O b j ect . s t a r t ( ) ;}i f ( i s T o p L e v e l C l a s s _ x j a l ( Main . c l a s s ) ) {onStartup () ;}}6935@ A n y Lo g i cI n t er n al Co d eg en A P Ip u b l i c void o n S t ar t u p ( ) {super . onStartup ( ) ;69406945695069556960int l ;int k = 0;double x_try , y_try ;double x _ ex i t ;double y _ ex i t ;f i n a l d o u b l e s t e p = Math . s q r t ( Math .
pow ( s c a l e . t o P i x e l s ( 1 , LENGTH_UNIT_METER ) , 2 ) ∗maxArea / Math . P I ) ;t_expl . clear () ;x_expl . c l e a r ( ) ;y_expl . c l e a r ( ) ;A r ea ( ) ;myWall ( ) ;Vert ( ) ;Hor ( ) ;r e c t a n g l e _ s t a t . s e t H e i g h t ( Max Rect an g l e ( ) . h e i g h t ) ;r e c t a n g l e _ s t a t . s e t W i d t h ( Max Rect an g l e ( ) . w i d t h ) ;i f ( d i s t r . e q u a l s ( " Равномерное р асп р едел ен и е " ) ) {f o r ( i n t i = 0 ; i < m _ v er t ∗m_hor ; i ++) {f o r ( i n t j = 0 ; j < g l o b a l _ d i s t r _ a r r a y [ i ] ; j ++) {x _ t r y = a0 + ( i % m_hor ) ∗ l e n 1 / m_hor + s t e p + ( l e n 1 / m_hor−2∗s t e p ) ∗Math . random ( ) ;y _ t r y = b0 + Math .
f l o o r ( i / m_hor ) ∗ l e n 2 / m _ v er t + s t e p + ( l e n 2 / m _ v er t−2∗s t e p ) ∗Math . random ( ) ;i f ( d i s t r _ e x i t . e q u a l s ( " Равномерное р асп р едел ен и е " ) ) {l=bernoulli (0.5) ;} else {24769656970697569806985699069957000l = b e r n o u l l i ( ( x _ t r y−a11 ) / l e n 1 ) ;}i f ( l ==0) {i f ( y _ t r y <b11+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) {x _ e x i t = a11 ;y _ e x i t = b11+ p e r s o n . g e t ( k ) .
a r e a . g e t R a d i u s X ( ) ;} e l s e i f ( ( y _ t r y >=b11+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) &&( y _ t r y <=b12−p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) ) {x _ e x i t = a11 ;y_exit = y_try ;} else {x _ e x i t = a11 ;y _ e x i t = b12−p e r s o n . g e t ( k ) .
a r e a . g e t R a d i u s X ( ) ;}} else {i f ( y _ t r y <b21+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) {x _ e x i t = a21 ;y _ e x i t = b21+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ;} e l s e i f ( ( y _ t r y >=b21+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) &&( y _ t r y <=b22−p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) ) {x _ e x i t = a21 ;y_exit = y_try ;} else {x _ e x i t = a21 ;y _ e x i t = b22−p e r s o n . g e t ( k ) . a r e a .
g e t R a d i u s X ( ) ;}}p e r s o n . g e t ( k ) . setXYZ ( x _ t r y , y _ t r y , 0 ) ;person . get ( k ) . x = x_try ;person . get ( k ) . y = y_try ;MyVector v ec = new MyVector ( x _ e x i t , y _ e x i t , x _ t r y , y _ t r y ) ;p e r s o n . g e t ( k ) . d_x = v ec . u n i t V e c t o r ( ) . g et X ( ) ;p e r s o n . g e t ( k ) . D_x = v ec .
u n i t V e c t o r ( ) . g et X ( ) ;p e r s o n . g e t ( k ) . d_y = v ec . u n i t V e c t o r ( ) . g et Y ( ) ;p e r s o n . g e t ( k ) . D_y = v ec . u n i t V e c t o r ( ) . g et Y ( ) ;person . get ( k ) . s e t _ e x i t ( Exit . values () [ l ]) ;person . get ( k ) . x_exit = x_exit ;person .
get ( k ) . y_exit = y_exit ;p e r s o n . g e t ( k ) . moveTo ( x _ e x i t , y _ e x i t ) ;k ++;}}} e l s e i f ( d i s t r . e q u a l s ( " Нормальное р асп р едел ен и е " ) ) {f o r ( i n t i = 0 ; i < m _ v er t ∗m_hor ; i ++) {7005f o r ( i n t j = 0 ; j < g l o b a l _ d i s t r _ a r r a y [ i ] ; j ++) {x _ t r y = a0 + ( i % m_hor ) ∗ l e n 1 / m_hor + s t e p + n o r m al ( 0 , l e n 1 / m_hor−2∗s t e p , l e n 1 / m_hor/2− s t e p + mu_norm_x∗( l e n 1 / m_hor/2− s t e p ) , s c a l e .t o P i x e l s ( si g _ n o r m _ x , LENGTH_UNIT_METER ) ) ;y _ t r y = b0 + Math . f l o o r ( i / m_hor ) ∗ l e n 2 / m _ v er t + s t e p + n o r m al ( 0 , l e n 2 / m _ v er t−2∗s t e p , l e n 2 / m _ v er t /2− s t e p + mu_norm_y∗( l e n 2 / m _ v er t /2−s t e p ) , s c a l e .
t o P i x e l s ( si g _ n o r m _ y , LENGTH_UNIT_METER ) ) ;i f ( d i s t r _ e x i t . e q u a l s ( " Равномерное р асп р едел ен и е " ) ) {l=bernoulli (0.5) ;7010} else {l = b e r n o u l l i ( ( x _ t r y−a11 ) / l e n 1 ) ;}i f ( l ==0) {i f ( y _ t r y <b11+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) {7015x _ e x i t = a11 ;y _ e x i t = b11+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ;} e l s e i f ( ( y _ t r y >=b11+ p e r s o n .
g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) &&( y _ t r y <=b12−p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) ) {x _ e x i t = a11 ;y_exit = y_try ;7020} else {x _ e x i t = a11 ;y _ e x i t = b12−p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ;}} else {7025i f ( y _ t r y <b21+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) {x _ e x i t = a21 ;y _ e x i t = b21+ p e r s o n . g e t ( k ) .
a r e a . g e t R a d i u s X ( ) ;} e l s e i f ( ( y _ t r y >=b21+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) &&( y _ t r y <=b22−p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) ) {x _ e x i t = a21 ;7030y_exit = y_try ;} else {x _ e x i t = a21 ;y _ e x i t = b22−p e r s o n . g e t ( k ) . a r e a .
g e t R a d i u s X ( ) ;}7035}p e r s o n . g e t ( k ) . setXYZ ( x _ t r y , y _ t r y , 0 ) ;person . get ( k ) . x = x_try ;person . get ( k ) . y = y_try ;MyVector v ec = new MyVector ( x _ e x i t , y _ e x i t , x _ t r y , y _ t r y ) ;7040p e r s o n . g e t ( k ) . d_x = v ec .
u n i t V e c t o r ( ) . g et X ( ) ;p e r s o n . g e t ( k ) . D_x = v ec . u n i t V e c t o r ( ) . g et X ( ) ;p e r s o n . g e t ( k ) . d_y = v ec . u n i t V e c t o r ( ) . g et Y ( ) ;2487045person .person .person .person .person .k ++;get ( k )get ( k )get ( k )get ( k )get ( k ). D_y = v ec . u n i t V e c t o r ( ) . g et Y ( ) ;. s e t _ e x i t ( Exit . values () [ l ]) ;. x_exit = x_exit ;. y_exit = y_exit ;. moveTo ( x _ e x i t , y _ e x i t ) ;}}} e l s e i f ( d i s t r . e q u a l s ( " Тр еу го л ь н о е р асп р едел ен и е " ) ) {f o r ( i n t i = 0 ; i < m _ v er t ∗m_hor ; i ++) {f o r ( i n t j = 0 ; j < g l o b a l _ d i s t r _ a r r a y [ i ] ; j ++) {x _ t r y = a0 + ( i % m_hor ) ∗ l e n 1 / m_hor + s t e p + t r i a n g u l a r ( 0 , l e n 1 / m_hor−2∗s t e p , l e n 1 / m_hor/2− s t e p + c _ t r i a n _ x ∗( l e n 1 / m_hor/2− s t e p ) ) ;7055y _ t r y = b0 + Math .
f l o o r ( i / m_hor ) ∗ l e n 2 / m _ v er t + s t e p + t r i a n g u l a r ( 0 , l e n 2 / m _ v er t−2∗s t e p , l e n 2 / m _ v er t /2− s t e p + c _ t r i a n _ y ∗( l e n 2 / m _ v er t/2− s t e p ) ) ;i f ( d i s t r _ e x i t . e q u a l s ( " Равномерное р асп р едел ен и е " ) ) {l=bernoulli (0.5) ;} else {l = b e r n o u l l i ( ( x _ t r y−a11 ) / l e n 1 ) ;7060}i f ( l ==0) {i f ( y _ t r y <b11+ p e r s o n . g e t ( k ) .
a r e a . g e t R a d i u s X ( ) ) {x _ e x i t = a11 ;y _ e x i t = b11+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ;7065} e l s e i f ( ( y _ t r y >=b11+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) &&( y _ t r y <=b12−p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) ) {x _ e x i t = a11 ;y_exit = y_try ;} else {x _ e x i t = a11 ;7070y _ e x i t = b12−p e r s o n . g e t ( k ) .
a r e a . g e t R a d i u s X ( ) ;}} else {i f ( y _ t r y <b21+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) {x _ e x i t = a21 ;7075y _ e x i t = b21+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ;} e l s e i f ( ( y _ t r y >=b21+ p e r s o n . g e t ( k ) . a r e a . g e t R a d i u s X ( ) ) &&( y _ t r y <=b22−p e r s o n .