Диссертация (1136188), страница 47
Текст из файла (страница 47)
Put m = −(χ, α). We can express xχ − xsα χ = xχ − xχ+mα as a formalpower series H(x, y) ∈ Lgr [[x, y]] in x = xχ and y = xα using the universal formalgroup law. Then H(x, y) is homogeneous and divisible by y [29, (2.5.1)] so thatthe ratio H(x, y)/y is a homogeneous power series. In particular, xχ − sα (xχ ) isdivisible by xα .Next, note that if the lemma holds for f and g, then it also holds for f g, sincef g − sα (f g) = (f − sα (f ))g + sα (f )(g − sα (g)). In particular, the lemma holds forany monomial in xχ as desired.
Theorem 6.4. Let X be a wonderful symmetric variety of minimal rank. Thenthe composite map∗∗sGT : ΩG (X) → (ΩT (X))W→ (Ω∗T (X))WKis a ring isomorphism with the rational coefficients.→ (Ω∗T (Y ))WK(6.4)410VALENTINA KIRITCHENKO, AMALENDU KRISHNAProof. All the arrows in (6.4) are canonical ring homomorphisms. The isomorphism of the first arrow follows from [22, Thm. 8.6]. We recall here that the proofof [22, Thm. 8.6] is based on a spectral sequence of Hopkins–Morel for the motivic cobordism.
Although the result of Hopkins–Morel has not been published yet(however, see [19]), the rational version of their spectral sequence and its degeneration is known and is an immediate consequence of [32, Cor. 10.6(ii)].Once we know the first isomorphism in (6.4), it suffices to show that the map(Ω∗T (X))W → (Ω∗T (Y ))WK is an isomorphism. We prove this by adapting theargument of [7, Thm. 2.2.1].Since X has only finitely many T -fixed points and finitely many T -stable curves,it follows from [23, Thm. 7.8] and Lemma 6.2 that Ω∗T (X) is isomorphic as an Salgebra to the space of tuples (fw·z )w∈W/WL of elements of S such thatfv·z ≡ fw·z (mod xχ )whenever v ·z and w ·z lie in an irreducible T -stable curve on which T acts throughits character χ.
Under this isomorphism, the ring S is identified with the constanttuples (f ).We deduce from this that (Ω∗T (X))W is isomorphic, via the restriction to theT -fixed point z, to the subring of S WL consisting of those f such thatv −1 (f ) ≡ w−1 (f ) (mod xχ )(6.5)for all v, w and χ as above.
Using Lemma 6.2, we conclude that (Ω∗T (X))isomorphic to the subring of S WL consisting of those f such thatf ≡ sα (f ) (mod xα )Wis(6.6)for α ∈ Σ+ \ Σ+L and those f such thatf ≡ sα sθ(α) (f ) (mod xγ )(6.7)for γ = α − θ(α) ∈ ∆G/K . However, it follows from Lemma 6.3 that (6.6) holdsWfor all f ∈ S. We conclude from this that (Ω∗T (X)) is isomorphic to the subringWLof Sconsisting of those f such that (6.7) holds for γ = α − θ(α) ∈ ∆G/K .Doing the similar calculation for Y and using Lemma 6.2 and [23, Thm.
7.8]again, we see that (Ω∗T (Y ))WK is isomorphic to the same subring of S. Thiscompletes the proof of the theorem. Remark 6.5. Since Y is a smooth toric variety, Ω∗T (Y ) can be explicitly calculatedin terms of generators and relations using [25, Thm. 1.1]. Combining this withTheorem 6.4, one gets a simple way of computing the equivariant cobordism ringof wonderful symmetric varieties of minimal rank.Example 6.6. If G = PGL2 × PGL2 , and θ interchanges both factors, thenG/K ' PGL2 admits a unique wonderful compactification X = P3 . Namely, P3can be regarded as P(End(k 2 )), where G acts by left and right multiplications.EQUIVARIANT COBORDISM OF FLAG AND SYMMETRIC VARIETIES411The toric variety Y is P1 in this case.
The torus T ⊂ G is two-dimensional, andS = Lgr [[xα , xβ ]], where α and β are simple roots of G. Both Ω∗T (X) and Ω∗T (Y )can be computed explicitly:Ω∗T (X) ' Lgr [[x, xα , xβ ]]/((x − xα+β )(x − xα−β )(x − x−α+β )(x − x−α−β )),Ω∗T (Y ) ' Lgr [[x, xα , xβ ]]/((x − xα+β )(x − x−α−β )).The Weyl group W ' Z/2Z ⊕ Z/2Z changes signs of α and β. In particular, thenontrivial element of the Weyl group WK = diag(W ) acts on Ω∗T (Y ) by x 7→ x,xα 7→ x−α , xβ → x−β .
It is easy to check directly that Ω∗T (X)W ' Ω∗T (Y )WKafter tensoring with Q.References[1] E. Bifet, C. De Concini, C. Procesi, Cohomology of regular embeddings, Adv. Math.82 (1990), 1–34.[2] A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. Math. (2)98 (1973), 480–497.[3] P.
Bressler, S. Evens, Schubert calculus in complex cobordism, Trans. Amer. Math.Soc. 331 (1992), no. 2, 799–813.[4] M. Brion, Equivariant cohomology and equivariant intersection theory, in: Broer,ed., Representation Theories and Algebraic Geometry, NATO ASI series, Vol. C514,Kluwer, Dorderecht, 1997, pp. 1–37.[5] M. Brion, Equivariant Chow groups for torus actions, Transform.
Groups 2 (1997),no. 3, 225–267.[6] M. Brion, The behaviour at infinity of the Bruhat decomposition, Comment. Math.Helv. 73 (1998), 137–174.[7] M. Brion, R. Joshua, Equivariant Chow ring and Chern classes of wonderful symmetric varieties of minimal rank , Transform. Groups 13 (2008), no. 3–4, 471–493.[8] B. Calmès, V. Petrov, K. Zainoulline, Invariants, torsion indices and oriented cohomology of complete flags, Ann. Sci. Ecole Norm. Sup 46 (2013), no.
3; arXiv:0905.1341v2.[9] C. De Concini, C. Procesi, Complete symmetric varieties I, in: Invariant Theory(Montecatini, 1982), Lecture Notes in Mathematics, Vol. 996, Springer, Berlin, 1983,pp. 1–44.[10] D. Deshpande, Algebraic cobordism of classifying spaces, (2009), arXiv:0907.4437v1.[11] D. Edidin, W. Graham, Equivariant intersection theory, Invent. Math. 131 (1998),595–634.[12] W. Fulton, Intersection Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.
Folge. A Series of Modern Surveys in Mathematics, 2. Springer-Verlag,Berlin, 1998.[13] M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality,and the localization theorem, Invent. Math. 131 (1998), 25–83.[14] M. Harada, A. Henriques, T. Holm, Computation of generalized equivariant cohomologies of Kac–Moody flag varieties, Adv. Math. 197 (2005), no. 1, 198–221.412VALENTINA KIRITCHENKO, AMALENDU KRISHNA[15] J.
Heller, J. Malagón–López, Equivariant algebraic cobordism, J. Reine Angew.Math., (2012), doi:10.1515/crelle-2011-0004.[16] T. Holm, R. Sjamaar, Torsion and abelianization in equivariant cohomology, Transform. Groups 13, (2008), no. 3–4, 585–615.[17] M. J. Hopkins, N. J. Kuhn, D. C. Ravenel, Generalized group characters and complexoriented cohomology theories, J. Amer. Math. Soc. 13 (2000), 553–594.[18] J. Hornbostel, V.
Kiritchenko, Schubert calculus for algebraic cobordism, J. ReineAngew. Math. 656 (2011), 59–85.[19] M. Hoyois, On the relation between algebraic cobordism and motivic cohomology,preprint, (2011), available at http://math.northwestern.edu/hoyois/.[20] A. Kono, D. Tamaki, Generalized Cohomology, Translated from the 2002 Japaneseedition, Translations of Mathematical Monographs, Vol.
230, Iwanami Series in Modern Mathematics, American Mathematical Society, Providence, RI, 2006.[21] B. Kostant, S. Kumar, T -equivariant K-theory of generalized flag varieties, J. Diff.Geom. 32 (1990), no. 2, 549–603.[22] A. Krishna, Equivariant cobordism of schemes, Doc. Math. 17 (2012), 95–134.[23] A. Krishna, Equivariant cobordism for torus actions, Adv. Math. 231 (2012), 2858–2891.[24] A. Krishna, Cobordism of flag bundles, (2010), arXiv:1007.1083v1.[25] A. Krishna, V. Uma, The cobordism ring of toric varieties, IMRN, to appear, (2012),doi:10.1093/imrn/rns212.[26] P. Landweber, Coherence, flatness and cobordism of classifying spaces, Proc.
Adv.Study Inst. Alg. Top. II (1970), 256–269.[27] P. Landweber, Elements of infinite filtration in complex cobordism, Math. Scand. 30(1972), 223–226.[28] Y-P. Lee, R. Pandharipande, Algebraic cobordism of bundles on varieties, J. Eur.Math. Soc. 14 (2012), 1081–1101.[29] M. Levine, F. Morel, Algebraic Cobordism, Springer Monographs in Mathematics,Springer, Berlin, 2007.[30] P. Littelmann, C.
Procesi, Equivariant cohomology of wonderful compactifications,in: Operator Algebras, Unitary Representations, Enveloping Algebras, and InvariantTheory, Progress in Mathematics, Vol. 92, Birkhäuser, Boston, 1990, pp. 219–262.[31] C. Liu, Equivariant algebraic cobordism and double point relations, (2011), arXiv:1110.5282v1.[32] N.
Naumann, M. Spitzweck, P. Østvær, Motivic Landweber exactness, Doc. Math.14 (2009), 551–593.[33] I. Panin, Oriented cohomology theories of algebraic varieties, K-Theory 30 (2003),265–314.[34] A. Preygel, Algebraic cobordism of varieties with G-bundles, (2010), arXiv:1007.0224v1.[35] N. Ressayre, Spherical homogeneous spaces of minimal rank , Adv. Math.
224 (2010),no. 5, 1784–1800.[36] R. Switzer, Algebraic Topology — Homotopy and homology, Die Grundlehren dermathematischen Wissenschaften, Bd. 212, Springer-Verlag, New York, 1975.EQUIVARIANT COBORDISM OF FLAG AND SYMMETRIC VARIETIES413[37] A. Tchoudjem, Cohomologie des fibrés en droites sur les varit́és magnifiques de rangminimal , Bull. Soc. Math. France. 135 (2007), no. 2, 171–214.[38] B. Totaro, The Chow ring of a classifying space, in: Algebraic K-theory (Seattle,WA, 1997), Proc. Sympos. Pure Math., Vol. 67, American Mathematical Society,Providence, RI, 1999, pp. 249–281.[39] B. Totaro, The torsion index of the spin group, Duke Math.
J. 129 (2005), no. 2,249–290.Приложение G.Статья 7.Pavel Gusev, Valentina Kiritchenko, Vladlen Timorin “Counting verticesin the Gelfand-Zetlin polytopes”Journal of Combinatorial Theory, Series A 120 (2013) 960–969Разрешение на копирование: Согласноhttps://www.elsevier.com/about/policies/sharing автор статьи может использоватьполную журнальную версию статьи в своей диссертации при условии, чтоуказан DOI статьи.Journal of Combinatorial Theory, Series A 120 (2013) 960–969Contents lists available at SciVerse ScienceDirectJournal of Combinatorial Theory,Series Awww.elsevier.com/locate/jctaCounting vertices in Gelfand–Zetlin polytopesPavel Gusev a , Valentina Kiritchenko a,b , Vladlen Timorin a,caFaculty of Mathematics and Laboratory of Algebraic Geometry, National Research University Higher Schoolof Economics, 7 Vavilova St., 117312 Moscow, RussiabRAS Institute for Information Transmission Problems, Bolshoy Karetny Pereulok 19, 127994 Moscow, RussiacIndependent University of Moscow, Bolshoy Vlasyevskiy Pereulok 11, 119002 Moscow, Russiaa r t i c l ei n f oa b s t r a c tArticle history:Received 20 June 2012Available online 13 February 2013We discuss the problem of counting vertices in Gelfand–Zetlinpolytopes.