Ecologia_prog_obsch_kursa_really_last (1135324)
Текст из файла
10
© 2008 А.М.Гиляров, В.Н.Максимов
п р о г р а м м а к у р с а
ОБЩАЯ ЭКОЛОГИЯ
II-е (зоолого-ботаническое) отделение, 3-й курс, осенний семестр, 72 часа
I. ПРЕДМЕТ, ЗАДАЧИ И МЕТОДЫ СОВРЕМЕННОЙ ЭКОЛОГИИ
Экология – наука о живом облике биосферы. Введение термина "экология" Эрнстом Геккелем (1866 г.) для обозначения науки о взаимодействиях организма и среды. Множественность корней современной экологии. Становление экологии как самостоятельной науки в 1920-30-е годы. Объекты экологии: организмы, популяции, сообщества, экосистемы, биосфера. Две группы задач и соответствующие им подходы: (1) изучение механизмов, определяющих распространение и обилие организмов (популяционный подход); (2) изучение процессов трансформации вещества и энергии, протекающих в природе с участием организмов (экосистемный подход). Объяснительное начало современной экологии.
II. БИОСФЕРА
Биосфера – пространство, охваченное жизнью. Распределение солнечной радиации по поверхности Земли. Наличие воды и атмосферы. Парниковые газы и их роль в поддержании температурного режима. Организм как дискретная самовоспроизводящаяся структура, связанная обменом веществ с окружающей средой. Набор незаменимых, необходимых всем организмам химических элементов: C, N, O, P, S, H). Роль других элементов. Зависимость организмов от разных источников энергии (фототрофы и хемотрофы) и разных источников углерода (автотрофы и гетеротрофы). Разнообразие способов использования вещества и энергии: большие возможности прокариот и крайне ограниченные – эукариот. Биосфера как гигантская система жизнеобеспечения.
Биосферный цикл углерода
Содержание углерода в литосфере, атмосфере, гидросфере и биоте. Геохимический цикл углерода и встраивание в него организмов. Устойчивые углеродсодержащие соединения (карбонаты, кероген). Выветривание карбонатов и силикатов: связывание диоксида углерода СО2. Возврат СО2 при повторном образовании в океане карбонатов (но не силикатов). Высачивание СО2 из земных недр (трагедия 1986 г. около озера Ниос в Камеруне).
Содержание диоксида углерода в атмосфере: многолетние (за сотни тысяч лет) колебания по данным анализа ледовых кернов в Антарктиде. Корреляция с изменениями температуры. Чередования длительных оледенений и относительно коротких теплых межледниковых периодов. Регулярные изменения орбиты Земли (циклы Миланковича) как пусковые механизмы последующих оледенений и потеплений. Динамика СО2 в атмосфере за миллионы лет: способы оценки, рост при потеплении 305 -265 миллионов лет тому назад.
Современная динамика содержания СО2 в атмосфере. Сезонные колебания на разных широтах. Решающая роль наземной растительности. Увеличение концентрации диоксида углерода в атмосфере за последнее столетие. Роль сжигания ископаемого топлива. Несводящийся баланс атмосферного углерода. Поиск недостающих мест стока (связывания) СО2. Ограниченные возможности океана и наземных экосистем. Глобальное потепление и его возможные последствия. Уменьшение массы ледников Гренландии и подъём уровня океана. Таяние ледового покрова Северного Ледовитого океана.
Углерод в океане. Структура водной толщи: стратификация, зоны подъема и опускания вод. Меридиональная Атлантическая циркуляция. Важная роль процессов, происходящих в Северной Атлантике. Океанический конвейер («Петля Брокера»). Термохалинный «двигатель» конвейера и возможность его остановки в результате потепления (опасность похолодания). Перенос углерода с поверхности в глубинные воды океана (физико-химический и биологический «насосы»). Первичная продукция фитопланктона и её ограничение нехваткой биогенных элементов. Роль зоопланктона в экспорте органического вещества из поверхностных вод океана (вертикальные миграции и поток фекальных пеллет). Детрит. Взвешенное и растворенное органическое вещество.
Углерод наземной биоты. Баланс связывания атмосферного СО2 (создание первичной продукции) и его выделения (дыхание всех организмов). Решающее значение наземной растительности. Трудности разложения лигнина и целлюлозы. Почва – корнеобитаемый слой на поверхности суши, депо органического углерода. Гумус и его роль в круговороте углерода. Увеличение фотосинтеза наземной растительности при возрастании содержания СО2 в атмосфере. Соотношение суммарной чистой первичной продукции океана и суши. Доля чистой первичной продукции, изымаемая человеком с суши (в среднем около 20%). Крайняя неравномерность распределения этой величины по разным регионам.
Метан (CH4) как один из важнейших парниковых газов атмосферы. Образование метана метаногенными бактериями (метаногенами). Необходимость анаэробных условий. Места активности метаногенов (болота, рисовые поля, кишечник животных). Антропогенные источники метана. Долговременные колебания содержания CH4 в атмосфере по данным ледовых кернов. Корреляция с температурой. Быстрый рост концентрации метана в атмосфере в ХХ столетии. Окисление метана гидроксильным радикалом – основной механизм, снижающий его содержание в атмосфере. Роль метанокислящих бактерий (метанотрофов). Усиление процессов выделения метана как результат глобального потепления. Оттаивание вечной мерзлоты.
Биосферный цикл кислорода
Биогенное (за счёт оксигенного фотосинтеза) происхождение молекулярного кислорода атмосферы. Длительное существование анаэробной атмосферы при наличии оксигенного фотосинтеза. Расход выделявшегося кислорода на окисление восстановленных соединений. Тесная связь цикла кислорода с циклом углерода (образованием и деструкцией органического вещества). Накопление кислорода в атмосфере как результат выведения из круговорота органического вещества (незаконченной деструкции). Изменение содержания кислорода в атмосфере в течение палеозоя. Озоновый слой и опасность его разрушения.
Биосферный цикл азота
Азот в веществе организмов. Роль азота в окислительно-восстановительных реакциях, проводимых рядом прокариот для получения энергии. Открытие С.Н.Виноградским хемосинтеза на примере нитрификации. Азотфиксация (связывание молекулярного азота прокариотами) и роль этого процесса для существования биосферы. Условия азотфиксации: отсутствие свободного кислорода, хорошая обеспеченность энергией, наличие некоторых элементов – специфических компонентов нитрогеназы. Свободноживущие и симбиотические азотфиксаторы. Азотфиксирующие симбионты высших растений. Ограничение азотфиксации в центральных районах океана нехваткой железа. Промышленная фиксация азота воздуха. Производство и применение азотных удобрений: масштабы этого процесса в сравнении с естественной азотфиксацией.
Азот в пищевых цепях. Ассимиляция растениями. Диссимиляция животными. Азотсодержащие продукты метаболизма животных (водных и наземных). Аммонификация. Замыкание цикла азота. Нитрификация, денитрификация, анаэробное окисление аммония. Роль в этих процессах разных групп организмов.
Выбросы оксидов азота промышленными предприятиями. Дальнейшая трансформация оксидов азота в атмосфере. Азотная кислота как компонент кислых дождей.
Биосферный цикл серы
Определяющая роль прокариот. Вовлеченность серы в окислительно-восстановительные реакции, используемые рядом прокариот для получения энергии. Этапы трансформации соединений серы. Ассимиляторное восстановление сульфатов. Сульфид водорода и сероводород как конечные продукты разложения органического вещества в анаэробных условиях. Опасность образования сероводорода при загрязнении водоемов органическим веществом (содержащимся, к примеру, в сточных водах). Тесная связь круговорота серы с циклом углерода. Образование сероводорода как результат сульфатредукции – диссимиляторного восстановления сульфатов бактериями.
Чёрное море – самый крупный аноксический (лишенный кислорода в большей части своей водной толщи) водоём мира. Особенности гидрологического режима. Сероводородная зона. Образование сероводорода сульфатредукторами на поверхности дна и в толще воды – у верхней границы анаэробной («зараженной» сероводородом) зоны.
Роль серы в гидротермальных биотопах – поддерживаемых хемосинтезом оазисах жизни, существующих на океаническом дне в местах тектонических разломов. Гидротермальные системы как локальные круговороты океанической воды. Горячие источники и холодные высачивания. Восстановленные соединения (в первую очередь серы) – источник энергии для бактерий, окисляющих эти вещества в среде, богатой кислородом). Вестиментиферы и другие животные, существующие за счёт хемосинтнезирующих бактерий.
Соединения серы в атмосфере. Сернистый газ, выбрасываемый вулканами и промышленными предприятиями. Кислые дожди и их воздействие на озера и леса. Диметилсульфид – летучее соединение, образуемое морскими планктонными водорослями. Окисление диметилсульфида в атмосфере и образование ионов сульфата, способствующих конденсации влаги и образованию облаков над океаном.
Биосферный цикл фосфора
Ведущая роль геохимических процессов. Перемещения фосфора по поверхности Земли с водой. Встраивание организмов в геохимический цикл фосфора. Ограничение первичной продукции в океане фосфором и азотом. Долговременные, в масштабах сотен тысяч и миллионов лет, колебания поступлении фосфора в океан. «Подстраивание» под имеющийся фосфор процессов азотфиксации. Лимитирование фосфором первичной продукции в континентальных водоемах. Исключительно быстрая оборачиваемость фосфора в водной толще. Роль зоопланктона в минерализации органического вещества и экскреция соединений фосфора. Евтрофирование водоемов. Фосфорные удобрения. Ограниченность запасов фосфорсодержащих минералов и необходимость их экономии.
Эволюция биосферы
Концепция биосферы В.И.Вернадского и концепция Геи Дж.Лавлока. Биогеохимические циклы и эволюция биосферы (сходство с сукцессией). Принципы развития биосферы. Аддитивность (новые компоненты добавляются к уже существующей и работающей системе). Корпоративность (только сообщество разных организмов может обеспечить круговорот вещества). Гетерогенность – одновременное присутствие на Земле биотопов, радикально различающихся по своим физико-химическим параметрам и биогеохимическим характеристикам. Основные этапы развития биосферы (по Г.А.Заварзину): от системы, представленной исключительно прокариотами (первые 1.5-2 млрд. лет), до присоединения к ним протистов (2-1 млрд. лет тому назад), многоклеточных животных (1 млрд. лет тому назад) и наземных растений (400 миллионов лет тому назад). Появление человека и постепенное возрастание его влияния на остальную биосферу. Оптимизм, связанный с необходимостью поддержания человеком биосферы.
III. ЭКОЛОГИЯ ОСОБИ: ОРГАНИЗМ И СРЕДА
Два типа экологических факторов: условия и ресурсы. Диапазон условий (температуры, влажности, солевого состава и др.), в пределах которого возможно существование и размножение организмов. Кривая толерантности. Многомерная модель экологической ниши (модель Э.Хатчинсона). Фундаментальная и реализованная ниша. Взаимодействие факторов. Переживание неблагоприятных условий в покоящемся состоянии.
Температура как экологический фактор
Эктотермы и эндотермы. Зависимость интенсивности обмена от температуры (уравнение Аррениуса, правило Вант-Гоффа). Характер зависимости скорости развития организмов от температуры. «Эффективная температура» и правило "суммы температур". Количество тепла как фактор, ограничивающий распространение организмов.
Заменимые и незаменимые ресурсы
Пороговая концентрация лимитирующего ресурса – минимальное его содержание, необходимое для поддержания существования популяции. Изоклина "нулевого роста" в пространстве двух ресурсов (заменимых и незаменимых). Закон Либиха. Элементы минерального питания и их роль в ограничении первичной продукции.
Свет как ресурс и условие
Фотосинтетически активная радиация (ФАР). Зависимость интенсивности фотосинтеза от освещенности и температуры. Разные типы фотосинтеза растений (С3, С4 и CAM) и их эколого-физиологические следствия. Сигнальное значение длины светового дня. Фотопериодизм. Свет в водной среде. Падение освещенности и изменение спектрального состава света с глубиной.
Пищевые ресурсы для гетеротрофов
Поступление энергии с пищей и её дальнейшая трансформация в организме. Рацион, ассимиляция, траты на обмен, рост и размножение. Опыты В.С.Ивлева по оценке трат энергии на рост.
Интенсивность обмена
Интенсивность обмена веществ у разных организмов и её оценка по скорости дыхания. Степенные уравнения, выражающие потребление энергии организмами как функцию массы тела (для одноклеточных организмов, многоклеточных эктотермов, многоклеточных эндотермов). Различия в величине свободного члена при сходстве показателя степени, равного + 0.75. Зависимость удельной (на единицу массы) скорости обмена от массы тела. Особый случай дыхания растений – показатель степени около + 1.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.