answers2010 (1131265), страница 7
Текст из файла (страница 7)
широкополосный кабель применяется для передачи аналоговых сигналов на больших расстояниях и, следовательно, требует промежуточных аналоговых усилителей. Эти промежуточные усилители пропускают сигналы только в одном направлении.
На одном конце волоконнооптической линии находится передатчик - источник света, световой импульс от этого источника проходит по светопроводящему волокну и попадает на детектор, который расположен на другом конце этой линии и преобразует этот импульс в электрический.
Другую проблему при использовании оптоволокна представляет дисперсия: исходный световой импульс по мере распространения теряет начальную форму и размеры. Используются два вида источников света: светодиод (LED) и полупроводниковый лазер.
-
Ширина полосы пропускания у оптоволокна несравненно больше, чем у медного кабеля.
-
Оптоволокно компактнее и меньше весит.
-
Затухание сигнала в оптоволокне существенно меньше, чем в коаксиале и витой паре, и остается постоянным для широкого диапазона частот.
-
Оптоволокно не восприимчиво к внешним электромагнитным излучениям.
-
Чем меньше репитеров, тем дешевле система и меньше источников ошибок - сотни километров. Для коаксиала или витой пары тот же показатель равен нескольким километрам.
18. Беспроводная связь (электромагнитный спектр, радиопередача, микроволновая передача, видимое излучение). TDMA, FDMA, CDMA - методы множественного доступа к беспроводному каналу.
Беспроводная связь востребована не только при мобильных вычислительных средствах, но и там, где прокладка любого кабеля затруднительна, либо невозможна, либо где требуется быстрое создание коммуникации.
Если к источнику электромагнитных волн подключить антенну соответствующего размера, то волны будут распространяться и регистрироваться приемниками. Длина антенны, как у приемника, так и у передатчика, и длина излучаемой/принимаемой ею волны связаны определенными соотношениями. Например, длина антенны приемника не может быть короче половины длины принимаемой ею волны.
Будем обозначать ƒ - частоту, а λ - длину волны. Фундаментальное соотношение, соединяющее ƒ, С и λ, таково: ƒ•λ=С (2-1)
Для передачи информации из всего этого спектра используется только следующие диапазоны: радио, микроволновый, инфракрасный, видимый и, частично, ультрафиолетовый. Количество данных, передаваемых электромагнитной волной, определяется ее шириной, т.е. спектром частот гармоник, составляющих эту волну. чем шире полоса, тем выше битовая скорость.
Радиоволны распространяются на большие расстояния, легко преодолевают преграды, техника их генерации и приема хорошо изучена, есть много специалистов по ее применению. Поэтому они широко используются для связи как вне, так внутри помещений. Поскольку радиоволны распространяются во всех направлениях, то принимающая и передающая антенны не требуют дополнительной настройки и взаимного расположения.
Свойства радиоволн зависят от их частоты. На низких частотах, т.е. длинных волнах, они прекрасно преодолевают препятствия, но мощность сигнала падает пропорционально 1/r3 , где r - расстояние до источника.
На высоких частотах радиоволны распространяются по прямой, но хуже преодолевают препятствия. Для некоторых частот помехой становится даже дождь. На всех частотах радиоволны чувствительны к помехам от электрических устройств.
Волны в микроволновом диапазоне распространяются в строго определенном направлении и могут быть сфокусированы с помощью параболической антенны, имеющей вид телевизионной тарелки. Однако приемная и передающая антенны должны быть тщательно ориентированы в пространстве по отношению друг к другу. Такая направленность позволяет строить цепочку ретрансляторов и таким образом передавать сигнал на большие расстояния.
Микроволны не проходят сквозь здания так же хорошо, как низкочастотные волны. Кроме этого, из-за рефракции в нижних слоях атмосфер они могут отклоняться от прямого направления. При этом увеличивается задержка, нарушается передача. Передача на этих частотах зависит также и от погоды. Как уже не раз отмечалось, при повышении влажности (дождь, туман и т.п.) ширина полосы резко сужается, растет шум, сигнал рассеивается.
Видимый диапазон также используется для передачи. Обычно источником света является лазер. Монохромное когерентное излучение легко фокусируется. Однако дождь или туман портят дело. Передачу способны испортить даже конвекционные потоки на крыше, возникающие в жаркий день
19. Телефонные сети: структура, проблема локальной петли (последняя миля). Технологии xDSL.
Структура современной телефонной сети весьма избыточная и многоуровневая.
код страны, код региона в стране, затем код района или города в регионе и только потом номер абонента. Каждый абонент соединен двумя витыми парами с ближайшей местной телефонной станцией (ТС), это соединение называют локальным соединением, абонентской линией или последней милей. Местная ТС соединена в крупных городах с районной ТС либо городской ТС. Районные и городские ТС соединены с региональными или междугородными ТС.
Для магистралей между узлами коммутации используют коаксиальные кабели, оптоволокно и радиорелейные линии на микроволнах.
В прошлом телефонная система на всех уровнях была аналоговая, т.е. по проводам передавали колебания по напряжению в соответствии с акустическими колебаниями, принимаемыми на мембране микрофона. С появлением цифровых методов передачи аналоговая техника стала вытесняться, и на сегодня аналоговыми остались только абонентские линии.
Напомним основные достоинства цифровой передачи:
-
Форма сигналов известна и постоянна, поэтому легко восстанавливается. Ретрансляция не накапливает ошибку.
-
По одной и той же линии можно передавать и голос, и видео, и данные, и тем самым повысить эффективность использования существующих линий.
-
Цифровая передача и цифровая техника дешевле.
-
Техническое обслуживание и поддержка цифрового оборудования дешевле.
Итак, современная телефонная сеть состоит из:
-
абонентской линии - локального соединения или последней мили (соединение «клиент - местная ТС»)
-
магистралей - оптоволоконных или микроволновых (соединение ТС-ТС)
-
станций коммутации (ТС)
при передаче данных приходится преобразовывать данные четыре раза из цифровой формы в аналоговую и обратно. Несмотря на то, что между узлами коммутации передача осуществляется в цифровой форме, в локальном соединении она пока аналоговая. Возникла проблема, как обеспечить частные квартиры и дома линиями связи надлежащей пропускной способности, - так называемая «проблема последней мили».
xDSL – это семейство технологий, предназначенных для организации цифровых абонентских линий – DSL (Digital Subscriber Line) – с использованием в качестве среды передачи медных витых пар существующих локальных соединений телефонных кабельных систем.
модемы xDSL используют всю полосу пропускания витой пары. xDSL-модемы могут работать только на участке телефонных кабельных систем между абонентом и сетью поставщика услуг или между двумя абонентами при непосредственном соединении их абонентских линий (без участия станции коммутации). Это так называемые выделенные линии.
Отличительной чертой семейства xDSL, по сравнению с модемами для физических линий, является использование спектра частот, не пересекающегося со спектром канала телефонных частот, благодаря чему по абонентской линии можно вести телефонные переговоры одновременно с передачей цифровой информации.
Технология DSL для передачи цифровой информации по одной витой паре со скоростью до 160 кбит/сек. (при этом в прямом и обратном направлении поддерживается одинаковая скорость). Технология DSL поддерживает аналоговую телефонную линию. Стандартный метод линейного кодирования – 2В1Q.
Оборудование HDSL обеспечивает дуплексный (симметричный) обмен на скорости 768 или 1024 кбит/с по одной витой паре и 2048 кбит/с по двум – трем витым парам. Система является однокабельной: по каждой паре проводов осуществляется и прием, и передача информации.
Асимметричная DSL обеспечивает передачу по витой паре потоков до 9 Мбит/с в одном направлении (как правило, в сторону пользователя) и до 640 кбит/с – в другом.
Технология RADSL позволяет отслеживать текущее состояние кабеля (электрические параметры и уровень шума (помех)) и динамически регулировать пропускную способность каналов связи, а также поддерживать максимально возможную степень передачи при требуемом минимальном уровне ошибок в канале связи.
20. Телефонные сети: структура, локальная петля, магистраль и мультиплексирование.
Структура современной телефонной сети весьма избыточная и многоуровневая.
код страны, код региона в стране, затем код района или города в регионе и только потом номер абонента. Каждый абонент соединен двумя витыми парами с ближайшей местной телефонной станцией (ТС), это соединение называют локальным соединением, абонентской линией или последней милей. Местная ТС соединена в крупных городах с районной ТС либо городской ТС. Районные и городские ТС соединены с региональными или междугородными ТС.
Для магистралей между узлами коммутации используют коаксиальные кабели, оптоволокно и радиорелейные линии на микроволнах.
В прошлом телефонная система на всех уровнях была аналоговая, т.е. по проводам передавали колебания по напряжению в соответствии с акустическими колебаниями, принимаемыми на мембране микрофона. С появлением цифровых методов передачи аналоговая техника стала вытесняться, и на сегодня аналоговыми остались только абонентские линии.
Напомним основные достоинства цифровой передачи:
-
Форма сигналов известна и постоянна, поэтому легко восстанавливается. Ретрансляция не накапливает ошибку.
-
По одной и той же линии можно передавать и голос, и видео, и данные, и тем самым повысить эффективность использования существующих линий.
-
Цифровая передача и цифровая техника дешевле.
-
Техническое обслуживание и поддержка цифрового оборудования дешевле.
Итак, современная телефонная сеть состоит из:
-
абонентской линии - локального соединения или последней мили (соединение «клиент - местная ТС»)
-
магистралей - оптоволоконных или микроволновых (соединение ТС-ТС)
-
станций коммутации (ТС)
при передаче данных приходится преобразовывать данные четыре раза из цифровой формы в аналоговую и обратно. Несмотря на то, что между узлами коммутации передача осуществляется в цифровой форме, в локальном соединении она пока аналоговая. Возникла проблема, как обеспечить частные квартиры и дома линиями связи надлежащей пропускной способности, - так называемая «проблема последней мили».
магистрали, соединяющие узлы коммутации разного уровня. создание методов и оборудования, позволяющих использовать одну и ту же магистраль одновременно для передачи нескольких разговоров. Такой технический прием называют мультиплексированием
Идея мультиплексирования с разделением частот очень проста: весь диапазон частот полосы пропускания кабеля разбивают на поддиапазоны, которые называют каналами. По каждому каналу идет независимая передача.
Мультиплексирование с разделением длины волны
Этот способ мультиплексирования используется для волоконноптических каналов
Мультиплексирование с разделением времени предполагает использование цифрового оборудования и хорошо соответствует возможностям компьютера. Следует отметить, что оно подходит только для работы с данными в цифровой форме.
Стандарт Е1 предполагает мультиплексирование 30 каналов. Каждая из 30 линий сканируется с частотой 8 000 Гц. Результаты каждого измерения представляют 8-битовое число. Это означает, что в методе ИКМ используются 256 уровней. В случае стандарта Т1 используются 7 бит, т.е. 128 уровней.
Полученные 240 бит упаковывают в кадр. Кадр в стандарте Е1 содержит 32 канала по 8 разрядов и занимает 125 мксек. 30 каналов используют для передачи данных, а два - для целей управления. Таким образом, стандарт Е1 обеспечивает скорость 2,048 Мбит/сек и мультиплексирует 30 линий одновременно.
Стандарт Т1 позволяет мультиплексировать 24 линии, но в каждом канале под данные используются лишь 7 разрядов и один разряд для целей управления. Кадр в Т1 содержит 193 бита и занимает 125 мксек, что обеспечивает скорость в 1,544 Мбит/сек.
TDM-мультиплексирование позволяет мультиплексировать уже мультиплексированные каналы. Так, согласно стандарту Т1, 4 канала Т1 могут быть объединены в один Т2, затем 6 в один Т3 и 7 в один Т4.
21. Телефонные сети: структура, методы коммутации.
Структура современной телефонной сети весьма избыточная и многоуровневая.