Главная » Просмотр файлов » Э. Таненбаум - Архитектура компьютера

Э. Таненбаум - Архитектура компьютера (1127755), страница 24

Файл №1127755 Э. Таненбаум - Архитектура компьютера (Э. Таненбаум - Архитектура компьютера) 24 страницаЭ. Таненбаум - Архитектура компьютера (1127755) страница 242019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 24)

2.11 содержит 3 круга, А, В и С, которые вместе образуют семь секторов. Давайте закодируем в качестве примера слово из 4 бит 1100 в сектора АВ, АВС, АС и ВС, по одному биту в каждом секторе (в алфавитном порядке). Подобное кодирование иллюстрирует рис. 2.11, а. 94 Глава 2. Организация компьютерных систем Предположим, что бит в секторе АС изменился с 0 на 1, как показано на рис. 2.11, в.

Компьютер обнаруживает, что круги А и С являются нечетными. Единственный способ исправить ошибку, изменив только один бит, — возвращение значения 0 биту в секторе АС. Таким способом компьютер может исправлять одиночные ошибки автоматически. А теперь посмотрим, как может использоваться алгоритм Хэмминга при создании кодов исправления ошибок для слов любого размера, В коде Хэмминга к слову, состоящему из т бит, добавляются г бит четности, при этом образуется слово длиной т + г бит. Биты нумеруются с единицы (а не с нуля), причем первым считается крайний левый.

Все биты, номера которых — степени двойки, являются битами четности; остальные используются для данных. Например, к 16-разрядному слову нужно добавить 5 бит четности. Биты с номерами 1, 2, 4, 8 и 16 — биты четности, все остальные — биты данных.

Всего слово содержит 21 бит (16 бит данных и 5 бит четности). В рассматриваемом примере мы будем использовать проверку на чстность (выбор произвольный). Каждый бит четности позволяет проверять определенные битовые позиции. Общее число битов со значением ! в проверяемых позициях должно быть четным. Нивке указаны позиции проверки для кажлого бита четности: + бит 1 проверяет биты 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21; + бит 2 проверяет биты 2, 3, 6, 7, 10, 11, 14, 15, 18, 19; + бит 4 проверяет биты 4, 5, 6, 7, 12, 13, 14, 15, 20, 21; + бит 8 проверяет биты 8, 9, 10, 11, 12, 13, 14, 15; + бит 16 проверяет биты 16, 17, 18, 19, 20, 21. В общем случае бит Ь проверяется битами 6„6э ..., Ьл такими, что 6, + 62 + ...

+ + Ь, = Ь. Например, бит 5 проверяется битами 1 и 4, поскольку 1 + 4 = 5. Бит 6 проверяется битами 2 и 4, поскольку 2 + 4 = 6 и т, д. Рисунок 2.12 иллюстрирует построение кода Хэмминга для 16-разрядного слова 1111000010101110. Соответствуюшим 21-разрядным кодовым словом является 001011100000101101110. Чтобы понять, как происходит исправление ошибок, рассмотрим, что произойдет.

если бит 5 изменит значение (например, из-за резкого скачка напряжения). В результате вместо кодового слова 001011100000101101110 получится 001001100000101101110. Будут проверены 5 бит четности. Вот результаты: + неправильный бит четности 1 (биты 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 содержат пять единиц); + правильный бит четности 2 (биты 2, 3, 6, 7. 10, 11, 14, 15, 18, 19 содержат шесть единиц); + неправильный бит четности 4 (биты 4, 5, 6, 7, 12, 13, 14, 15, 20, 21 содержат пять единиц); + правильный бит четности 8 (биты 8, 9, 10, 11, !2, 13, 14, 15 содержат две единицы); + правильный бит четности 16 (биты 16, 17, 18, 19, 20, 21 содержат четыре единицы).

Основная память 95 Общее число единиц в битах 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 должно быть четным, поскольку в данном случае используется проверка на четность. Неправильным должен быть один из битов, проверяемых битом четности 1 (а именно 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21). Бит четности 4 тоже неправильный. Это значит, что изменил значение один из следующих битов: 4, 5, 6, 7, 12, 13, 14, 15, 20, 21. Ошибка должна быть в бите, который содержится в обоих списках. В данном случае общими являются биты 5, 7, 13, 15 и 21.

Поскольку бит четности 2 правильный, биты 7 и 15 исключаются. Правильность бита четности 8 исключает наличие ошибки в бите 13. Наконец, бит 21 также исключается, поскольку бит четности 16 правильный. В итоге остается бит 5, в котором и кроется ошибка. Поскольку этот бит имеет значение 1, он должен принять значение О. Именно таким образом исправляются ошибки. Слово 1111000010101110 в памяти четности Рис. 2.12. Построение кода Хзмминга для слова 1111000010101110 добавлением к битам данных пяти контрольных разрядов Чтобы найти неправильный бит, сначала нужно подсчитать все биты четности. Если они правильные, ошибки нет (или есть, но ошибка не однократная).

Если обнаружились неправильные биты четности, нужно сложить их номера. Сумма, полученная в результате, даст номер позиции неправильного бита. Например, если биты четности 1 и 4 неправильные, а 2, 8 и 16 правильные, то ошибка произошла в бите 5 (1 ч- 4). Кэш-память Процессоры всегда работали быстрее, чем память. Так как процессоры и память совершенствуются параллельно, это несоответствие сохраняется.

Поскольку на микросхему можно помещать все больше и больше транзисторов, разработчики процессоров создают конвейерные и суперскалярные архитектуры, что еще больше увеличивает быстродействие процессоров. Разработчики памяти обычно используют новые технологии для увеличения емкости, а не быстродействия, что делает разрыв еще большим.

На практике такое несоответствие в скорости работы приводит к тому, что, когда процессор обращается к памяти, проходит несколько машинных циклов, прежде чем он получит запрошенное слова Чем медленнее работает память, тем дольше процессору приходится ждать, тем больше циклов проходит. Как мы уже отмечали, есть два пути решения проблемы. Самый простой из них — начать считывать информацию из памяти и при этом продолжать выполнение команд, но если какая-либо команда попьггается использовать слово до того, 96 Глава 2. Организация компьютерных систем как оно считано из памяти, процессор должен приостановить работу. Чем медленнее работает память, тем чаще будет возникать такая ситуация и тем больше окажется время простоя процессора.

Например, если отсрочка составляет 10 циклов, весьма вероятно, что одна из 10 следующих команд попытается использовать слово, которое еще не считано из памяти. Другое решение проблемы — сконструировать машину, которая не приостанавливает работу, но следит, чтобы программы-компиляторы не использовали слова до того, как они считаны из памяти.

Однако это не так просто осуществить на практике. Часто при обработке команды загрузки машина не может выполнять другие действия, поэтому компилятор вынужден вставлять пустые команды, которые не производят никаких операций, но при этом занимают место в памяти. В действительности при таком подходе простаивает не аппаратное, а программное обеспечение, но снижение производительности при этом такое же. На самом деле эта проблема не технологическая, а зкономическая.

Инженеры знают, как создать память, которая работает так же быстро, как процессор. Однако ее приходится помещать прямо на микросхему процессора (поскольку информация через шину поступает очень медленно). размещение памяти большого объема на микросхеме процессора делает его больше и, следовательно, дороже, и даже если бы стоимость не имела значения, все равно существуют ограничения на размеры создаваемых процессоров.

Таким образом, приходится выбирать между быстрой памятью небольшого объема и медленной памятью большого объема. (Мы, естественно, предпочли бы иметь быструю память большого объема и к тому же дешевую.) Интересно отметить, что существуют технологии, объединяющие небольшую и быструю память с большой и медленной, что позволяет по разумной цене получить память и с высокой скоростью работы, и болыпой емкости. Память небольшого объема с высокой скоростью работы называется кэш-памятью (от французского слова «сасЬе㻠— «прятать»', читается «каша»). Далее мы кратко опишем, как используется кэш-память и как она работает. Более подробное описание вы найдете в главе 4. Основная идея кэш-памяти проста: в ней находятся слова, которые чаще всего используются.

Если процессору нужно какое-нибудь слово, сначала он обращается к кэш-памяти. Только в том случае, если слова там нет, он обращается к основной памяти. Если значительная часть слов находится в кэш-памяти, среднее время доступа значительно сокращается. Таким образом, успех или неудача зависит от того, какая часть слов находится в кзш-памяти.

Давно известно, что программы не обращаются к памяти наугад. Если программе нужен доступ к адресу А, то скорее всего после этого ей понадобится доступ к адресу, расположенному поблизости от А. Практически все команды обычной программы (за исключением команд перехода и вызова процедур) вызываются из последовательных областей памяти. Кроме того, большу1о часть времени программа тратит на циклы, когда ограниченный набор команд В английском языке слово «сагй» получило значение «наличные (кармапныс) деньги», то есть то, что под рукой. А уже из него и образовался термин «кзш», который относят к сверхоперативной памяти. — Примеч.

научи. ред. Основная память 97 выполняется снова и снова. Точно так же при манипулировании матрицами программа скорее всего будет обращаться много раз к одной и той же матрице, прежде чем перейдет к чему-либо другому. Ситуация, когда при последовательных обращениях к памяти в течение некоторого промежутка времени используется только небольшая ее область, называется принципом локальности. Этот принцип составляет основу всех систем кэш-памяти. Идея состоит в том, что когда определенное слово вызывается из памяти, оно вместе с соседними словами переносится в кэш-памятгь что позволяет при очередном запросе быстро обращаться к следующим словам. Общее устройство процессора, кэш-памяти и основной памяти иллюстрирует рис.

2.13. Если слово считывается или записывается я раз, компьютеру требуется сделать 1 обращение к медленной основной памяти и я — 1 обращений к быстрой кзш-памяти. Чем больше в, тем выше общая производительность. ная ять Шина Рис. 2.13. Кэш-память по логике вещей должна находиться между процессором и основной памятью. В действительности существует три возможных варианта размещения кэш-памяти Мы можем сделать и более строгие вычисления.

Характеристики

Тип файла
DJVU-файл
Размер
13,7 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее