Darrigol O., Frisch U. «From Newton's mechanics to Euler's equations» (1123933), страница 8
Текст из файла (страница 8)
Cf. Truesdell, 1954: LXXXV–C.56 As observed by Truesdell, 1954: XC–XCI), in Section 66 Euler reverts tothe assumption of non-vortical flow, a possible leftover of an earlier version ofthe paper.57 Euler, 1755c: 345/117.58 Euler, 1755b: 315/91.1868O. Darrigol, U. Frisch / Physica D 237 (2008) 1855–18695. ConclusionsReferencesIn retrospect, Euler was right in judging that his “twoequations” were the definitive basis of the hydrodynamics ofperfect fluids. He reached them at the end of a long historicalprocess of applying dynamical principles to fluid motion. Anessential element of this evolution was the recurrent analogybetween the efflux from a narrow vase and the fall of acompound pendulum. Any dynamical principle that solvedthe latter problem also solved the former.
Daniel Bernoulliappealed to the conservation of live forces; Johann Bernoullito Newton’s second law together with the idiosyncratic conceptof translatio; d’Alembert to his own dynamical principle ofthe equilibrium of destroyed motions. With this more generalprinciple and his feeling for partial differentials, d’Alembertleapt from parallel-slice flows to higher problems that involvedtwo-dimensional anticipations of Euler’s equations. Althoughhis method implicitly contained a general derivation of theseequations in the incompressible case, his geometrical style andhis abhorrence of internal forces prevented him from taking thisstep.Despite d’Alembert’s reluctance, another important elementof this history turns out to be the rise of the concept of internalpressure.
The door on the way to general fluid mechanicsopened with two different keys, so to speak: d’Alembert’sprinciple, or the concept of internal pressure. D’Alembert(and Lagrange) used the first key, and introduced internalpressure only as a derivative concept. Euler used the secondkey, and ignored d’Alembert’s principle. As Euler guessed (andas d’Alembert suggested en passant), Newton’s old secondlaw applies to the volume elements of the fluid, if onlythe pressure of fluid on fluid is taken into account.
Euler’sequations derive from this deceptively simple consideration,granted that the relevant calculus of partial differentials isknown. Altogether, we see that hydrodynamics rose throughthe symbiotic evolution of analysis, dynamical principles, andphysical concepts. Euler pruned the unnecessary and unclearelements from the abundant writings of his predecessors,and combined the elements he judged most fundamental inthe clearest and most general manner. He thus obtained anamazingly stable foundation for the science of fluid motion.The discovery of sound foundations only marks thebeginning of the life of a theory. Euler himself suspectedthat the integration of his equations would in general be aformidable task.
It soon became clear that their applicationto problems of resistance or retardation led to paradoxes.In the following century, physicists struggled to solve theseparadoxes by various means: viscous terms, discontinuitysurfaces, instabilities. A quarter of a millennium later, somevery basic issues remain open, as many contributions to thisconference amply demonstrate.Ackeret, Jakob 1957 ‘Vorrede’, in L.
Euler, Opera omnia, ser. 2, 15, VII–LX,Lausanne.Bernoulli, Daniel 1738 Hydrodynamica, sive de viribus et motibus fluidorumcommentarii, Strasbourg.Bernoulli, Daniel 2002 Die Werke von Daniel Bernoulli, vol. 5, ed. Gleb K.Mikhailov, Basel.Bernoulli, Johann 1714 ‘Meditatio de natura centri oscillationis.’ ActaEruditorum Junii 1714, 257–272. Also in Opera omnia 2, 168–186,Lausanne.Bernoulli, Johann 1742 ‘Hydraulica nunc primum detecta ac demonstratadirecte ex fundamentis pure mechanicis. Anno 1732.’ Also in Operaomnia 4, 387–493, Lausanne.Blay, Michel 1992 La naissance de la mécanique analytique: La science dumouvement au tournant des XVIIe et XVIIIe siècles, Paris.Calero, Julián Simón 1996 La génesis de la mecánica de los fluidos(1640–1780), Madrid.Casey, James 1992 ‘The principle of rigidification.’ Archive for the history ofexact sciences 43, 329–383.D’Alembert, Jean le Rond 1743 Traité de dynamique, Paris.D’Alembert, Jean le Rond 1744 Traité de l’équilibre et du mouvement desfluides.
Paris.D’Alembert, Jean le Rond 1747 Réflexions sur la cause générale des vents,Paris.D’Alembert, Jean le Rond [1749] Theoria resistenciae quam patitur corpus influido motum, ex principiis omnino novis et simplissimis deducta, habitaratione tum velocitatis, figurae, et massae corporis moti, tum densitatis& compressionis partium fluidi; manuscript at Berlin-BrandenburgischeAkademie der Wissenschaften, Akademie-Archiv call number: I–M478.D’Alembert, Jean le Rond 1752 Essai d’une nouvelle théorie de la résistancedes fluides, Paris.D’Alembert, Jean le Rond 1761 ‘Remarques sur les lois du mouvement desfluides.’ In Opuscules mathématiques vol.
1 (Paris, 1761), 137–168.Darrigol, Olivier 2005 Worlds of flow: A history of hydrodynamics from theBernoullis to Prandtl, Oxford.Dugas, René 1950 Histoire de la mécanique. Paris.Eckert, Michael 2002 ‘Euler and the fountains of Sanssouci. Archive for thehistory of exact sciences 56, 451–468.Eckert, Michael 2005 The dawn of fluid mechanics: A discipline betweenscience and technology, Berlin.Eckert, Michael 2008 ‘Water-art problems at Sans-souci — Euler’s involvementin practical hydrodynamics on the eve of ideal flow theory,’ in theseProceedings.Euler, Leonhard 1727 ‘Dissertatio physica de sono’, Basel.
Also in Operaomnia, ser. 3, 1, 183–196, [Eneström index] E002.Euler, Leonhard 1745 Neue Grundsätze der Artillerie, aus dem englischen desHerrn Benjamin Robins übersetzt und mit vielen Anmerkungen versehen[from B. Robins, New principles of gunnery (London,1742)], Berlin. Alsoin Opera ommia, ser. 2, 14, 1–409, E77.Euler, Leonhard 1749 Scientia navalis seu tractatus de construendis acdirigendis navibus, 2 volumes (St. Petersburg 1749) [completed by 1738].Also in Opera ommia, ser.
2, 18 and 19, E110 and E111.Euler, Leonhard 1750 ‘Découverte d’un nouveau principe de mécanique.’Académie Royale des Sciences et des Belles-Lettres de Berlin, Mémoires[abbreviated below as MASB], 6 [printed in 1752], 185–217. Also in Operaomnia, ser. 2, 5, 81–108, E177.Euler, Leonhard 1752 ‘Sur le mouvement de l’eau par des tuyaux de conduite.’MASB, 8 [printed in 1754], 111–148. Also in Opera omnia, ser. 2, 15,219–250, E206.Euler, Leonhard 1755a ‘Principes généraux de l’état d’équilibre d’un fluide.’MASB, 11 [printed in 1757], 217–273. Also in Opera omnia, ser. 2, 12,2–53, E225.Euler, Leonhard 1755b ‘Principes généraux du mouvement des fluides’ MASB,11 [printed in 1757], 274–315. Also in Opera omnia, ser.
2, 12, 54–91,E226.Euler, Leonhard 1755c ‘Continuation des recherches sur la théorie dumouvement des fluides.’ MASB, 11 [printed in 1757], 316–361. Also inOpera omnia, ser. 2, 12, 92–132, E227.AcknowledgmentsWe are grateful to G. Grimberg, W.
Pauls and twoanonymous reviewers for many useful remarks. We alsoreceived considerable help from J. Bec and H. Frisch.O. Darrigol, U. Frisch / Physica D 237 (2008) 1855–1869Euler, Leonhard 1760 ‘Recherches sur le mouvement des rivières’[writtenaround 1750–1751]. MASB, 16 [printed in 1767], 101–118. Also in Operaomnia, ser. 2, 12, 272–288, E332.Euler, Leonhard 1756–1757 ‘Principia motus fluidorum’ [written in 1752].
Novicommentarii academiae scientiarum Petropolitanae, 6 [printed in 1761],271–311. Also in Opera omnia, ser. 2, 12, 133–168, E258.Euler, Leonhard [1784] ‘Calculs sur les ballons aérostatiques, faits par le feuM. Euler, tels qu’on les a trouvés sur son ardoise, après sa mort arrivéele 7 septembre 1783’, Académie Royale des Sciences (Paris), Mémoires,1781 [printed in 1784], 264–268. Also in Opera omnia, ser.
2, 16, 165–169,E579.Euler, Leonhard 1998 Commercium epistolicum, ser. 4A, 2, eds. Emil Fellmannand Gleb Mikhajlov (Mikhailov). Basel.Fraser, Craig 1985 ‘D’Alembert’s principle: The original formulationand application in Jean d’Alembert’s Traité de dynamique (1743).’Centaurus 28, 31–61, 145–159.Günther Garbrecht (ed.), 1987 Hydraulics and hydraulic research: A historicalreview, Rotterdam.Grimberg, Gérard 1998 D’Alembert et les équations aux dérivées partielles enhydrodynamique, Thèse.