Часть 1 (1120999), страница 2

Файл №1120999 Часть 1 (B. Alberts, A. Johnson, J. Lewis и др. - Molecular Biology of The Cell (5th edition)) 2 страницаЧасть 1 (1120999) страница 22019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

18The Numbersof GeneFamilies,classifiedby Function,That Are common to AllThreeDomainsof the LivingWorldp.24Covalentand NoncovalentChemicalBondsp. 53TheTypesof MoleculesThat Form a BacterialCellp.55ApproximateChemicalCompositionsof a TypicalBacteriumand a TypicalMammalianCellp.63RelationshipBetweenthe StandardFree-EnergyChange,AG, and theEquilibrium Constantp.77ChemicalBondsand GroupsCommonlyEncounteredin BiologicalMolecules pp. 106-107Waterand Its Influenceon the Behaviorof BiologicalMoleculespp. 108-109The PrincipalTypesof weak NoncovalentBondsthat Hold MacromoleculesTogetherpp.

r 1 0 - 1 1 1An Outline of Someof the Typesof SugarsCommonlyFoundin Cellspp. 1 1 2 - 1 1 3FattyAcidsand Other Lipidspp. I l4-1 I5A Surveyof the Nucleotidespp. I 16-1r7FreeEnergyand BiologicalReactionspp. I IB-t 19Detailsof the t0 Stepsof Glycolysispp. r20-I2lThe CompleteCitric Acid Cyclepp. I22-t23The 20 Amino AcidsFoundin Proteinspp.tzg-729Four DifferentWaysof Depictinga SmallProtein,the SH2Domainpp. 132-133SomeCommonTypesof Enzymesp.159Someof the MethodsUsedto StudyEnzymespp. 162-163SomeVitalStatisticsfor the Human Genomep.206ThreeMajor Classesof TransposableElementsp.318PrincipalTlpes of RNAsProducedin Cellsp.336Reviewof ClassicalGeneticspp.

554-555ApproximateLipid Compositionsof DifferentCellMembranesp.624A Comparisonof Ion ConcentrationsInsideand Outsidea TypicalMammalianCell p . 6 5 2The Derivationof the NernstEquationp.670SomeClassicalExperimentson the SquidGiantAxonp. 679RelativeVolumesOccupiedby the Major IntracellularCompartmentsin a LiverCell (Hepatocyre)p. 697RelativeAmounts of MembraneTypesin Two Kinds of Eucaryoticcellsp.697ProductYieldsfrom the Oxidationof Sugarsand Fatsp.824RedoxPotentialsp.830The RasSuperfamilyof MonomericGTpasesp.926The Polymerizationof Actin and Tubulinpp.

978-979AccessoryProteinsthat Controlthe Assemblyand positionof CvtoskeletalFilamentspp. 994-995Summaryof the Major Cell-CycleRegulatoryproteinsp. 1066The PrincinleStases of M Phasp (Mitnsis nnrl Crrfnlrinpcic\ in qn Animal/-ollnnrATo rA?aDetailedContentsChapter 1 Cells and Genomes1THEUNIVERSALFEATURESOF CELLSON EARTH1Informationin the SameLinearAllCellsStoreTheirHereditaryChemicalCode(DNA)byTemplatedHereditaryInformationAllCellsReplicateTheirPolymerizationPortionsof TheirHereditaryInformationintoAll CellsTranscribeForm(RNA)the SameIntermediaryAll CellsUseProteinsasCatalystsRNAinto Proteinin the SameWayAll CellsTranslateto OneTheFragmentof GeneticInformationCorrespondingProteinlsOneGeneLifeRequiresFreeEnergywith theFactoriesDealingAllCellsFunctionasBiochemicalBuildingBlocksSameBasicMolecularAcrossWhichin a PlasmaMembraneAllCellsAreEnclosedMustPassNutrientsandWasteMaterialsA LivingCellCanExistwith FewerThan500GenesSummary545o78891011OF GENOMESAND THETREEOF LIFETHEDIVERSITYCellsCanBePoweredby a Varietyof FreeEnergySourcesSomeCellsFixNitrogenand CarbonDioxidefor OthersCellsTheGreatestBiochemicalDiversityExistsAmongProcaryoticArchaea,Bacteria,TheTreeof LifeHasThreePrimaryBranches:and EucaryotesOthersAreHighlyConservedSomeGenesEvolveRapidly;Genesand ArchaeaHave1000-6000MostBacteriafrom PreexistingGenesNewGenesAreGeneratedof RelatedGenesWithinGiveRiseto FamiliesGeneDuplicationsa SingleCellBothin theBetweenOrganisms,GenesCanBeTransferredand in NatureLaboratoryof GeneticInformationin HorizontalExchangesSexResultsWithina SpeciesTheFunctionof a GeneCanOftenBeDeducedfrom lts SequenceAreCommonto AllThreePrimaryMoreThan200GeneFamiliesBranchesof the Treeof Lifethe Functionsof GenesMutationsRevealHaveFocuseda Spotlighton E coliMolecularBiologistsSummary11IN EUCARYOTESGENETICINFORMATIONCellsMayHaveOriginatedasPredatorsEucaryoticCellsEvolvedfrom a SymbiosisModernEucaryoticHaveHybridGenomesEucaryotesEucaryoticGenomesAreBigDNAGenomesAreRichin RegulatoryEucaryoticDevelopmentTheGenomeDefinesthe Programof MulticellularLiveasSolitaryCells:the ProtistsManyEucaryotesA YeastServesasa MinimalModelEucaryoteLevelsof AllTheGenesof An OrganismCanBeTheExpressionMonitoredSimultaneouslyandComputers,To MakeSenseof Cells,We NeedMathematics,InformationQuantitativeAsa ModelHasBeenChosenOut of 300,000SpeciesArabidopsis26Plant121314t5to17181921222223z)242626303031315Z333435JOBya Worm,a Fly,TheWorldof AnimalCellsls Representedanda Humana Mouse,DevelopmentProvidea Keyto VertebrateStudiesin DrosophilaDuplicationGenomels a Productof RepeatedTheVertebrateButlt Createsls a Problemfor Geneticists,GeneticRedundancyfor EvolvingOrganismsOpportunitiesasa Modelfor MammalsTheMouseServesReporton TheirOwnPeculiaritiesHumansWeAreAll Differentin DetailSummoryProblemsReferencesChapter2 CellChemistryand BiosynthesisOFA CELLCOMPONENTSTHECHEMICAL363738395>40414242444545of AtomsCellsAreMadeFroma FewTypesDetermineHow AtomslnteractTheOutermostElectronsCovalentBondsFormby the Sharingof ElectronsThereAreDifferentTypesof CovalentBondsasif lt Hasa FixedRadiusAn AtomOftenBehavesin CellsWaterlsthe MostAbundantSubstanceAreAcidsand BasesSomePolarMoleculesAttractionsHelpBringMoleculesof NoncovalentFourTypesTogetherin CellsA Cellls Formedfrom CarbonCompoundsMoleculesof SmallOrganicCellsContainFourMajorFamiliesSugarsProvidean EnergySourcefor CellsandArethe Subunitsof PolysaccharidesasWellasaof CellMembranes,FattyAcidsAreComponentsSourceof EnergYAminoAcidsArethe Subunitsof Proteinsof DNAandRNAArethe SubunitsNucleotideswithof Cellsls Dominatedby MacromoleculesTheChemistryPropertiesRemarkableShapeof aBondsSpecifyBoththe PreciseNoncovalentanditsBindingto OtherMoleculesMacromoleculeSummary45464850515152AND THE USEOF ENERGYBY CELLSCATALYSISby EnzymesCellMetabolismls Organizedof HeatEnergyby the ReleaseOrderls MadePossibleBiologicalfrom CellsOrganicUseSunlightto SynthesizeOrganismsPhotosyntheticMoleculesCellsObtainEnergyby the Oxidationof OrganicMoleculesTransfersOxidationand ReductionInvolveElectronThatBlockChemicalReactionsLowerthe BarriersEnzymesRapidityofTheEnormousFindTheirSubstrates:HowEnzymesMolecularMotionsWhetherltChangefor a ReactionDeterminesTheFree-EnergyCanOccurthe Free-EnergyInfluencesof ReactantsTheConcentrationDirectionChangeand a Reaction'sAG"ValuesAreAdditiveReactions,ForSequentialfor BiosynthesisAreEssentialActivatedCarrierMoleculesof an ActivatedCarrierlsCoupledto anTheFormationReactionFavorableEneroeticallv6553545555585961oz63656666687071727475767778ATPlsthe MostWidelyUsedActivatedCarrierMoleculeEnergyStoredin ATPlsOftenHarnessedto JoinTwoMoleculesTogetherNADHand NADPHAre lmportantElectronCarriersThereAreManyOtherActivatedCarrierMoleculesin CellsTheSynthesisof BiologicalPolymersls Drivenby ATpHydrolysisSummary808182838487HOW CELLSOBTAINENERGYFROMFOOD88pathwayGlycolysisls a CentralATP-producing88FermentationsProduceATPin the Absenceof OxygenRqGlycolysislllustratesHow EnzymesCoupleOxidationto EnergyStorage91OrganismsStoreFoodMoleculesin SpecialReservoirs91MostAnimalCellsDeriveTheirEnergyfrom FattyAcidsBetweenMeals95Sugarsand FatsAreBothDegradedto AcetylCoAin Mitochondria voTheCitricAcidCycleGeneratesNADHby OxidizingAcetylGroupsto CO2o7ElectronTransportDrivesthe Synthesisof the Majorityof the ATpin MostCells100AminoAcidsand NucleotidesAre partof the NitrogenCycle100Metabolismls Organizedand Regulated101Summary103Problems103References124Chapter3 ProteinsTHESHAPEANDSTRUCTUREOFPROTEINSTheShapeof a Proteinls Specifiedby lts AminoAcidSequenceProteinsFoldinto a Conformationof LowestEnergyThecrHelixand the B SheetAreCommonFoldingpatternsProteinDomainsAreModularUnitsfrom whichLargerproteinsAreBuiltFewof the ManyPossiblePolypeptideChainsWillBeUsefurto CellsProteinsCanBeClassifiedintoManyFamiliesSequenceSearchesCanldentifyCloseRelativesSomeProteinDomainsFormpartsof ManyDifferentproteinsCertainPairsof DomainsAreFoundTogetherin ManyproteinsTheHumanGenomeEncodesa ComplexSetof proteins,RevealingMuchThatRemainsUnknownLargerProteinMoleculesOftenContainMoreThanOnePolypeptideChainSomeProteinsFormLongHelicalFilamentsManyProteinMoleculesHaveElongated,FibrousShapesManyProteinsContaina SurprisinglyLargeAmountofUnstructuredPolypeptideChainproteinsCovalentCross-LinkagesOftenStabilizeExtracellularProteinMoleculesOftenServeasSubunitsfor the Assembryof LargeStructuresManyStructuresin CellsAreCapableof Self-AssemblyAssemblyFactorsOftenAidthe Formationof ComolexBiologicalStructuresSummary125125tzJ130131tJ)I Jt)137139140141142"t42143t4)"146147148149151't52PROTEINFUNCTION152All ProteinsBindto OtherMolecules153TheSurfaceConformationof a ProteinDetermineslts Chemistrv 154SequenceComparisonsBetweenproteinFamilyMembersHighlightCrucialLigand-BindingSites155ProteinsBindto OtherProteinsThroughSeveralTypesofInterfacestf,oAntibodyBindingSitesAreEspeciallyVersatile156TheEquilibriumConstantMeasuresBindingStrength157EnzymesArePowerfuland HighlySpecificCatalysts158SubstrateBindingls the FirstStepin EnzymeCatalysisi59EnzymesSpeedReactionsby SelectivelyStabilizingTransitronStates160EnzymesCanUseSimultaneousAcidandBaseCatalysis160LysozymelllustratesHowan EnzymeWorks16"1TightlyBoundSmallMoleculesAdd ExtraFunctionsto prorerns166MolecularTunnelsChannelSubstratesin Enzymeswith'167MultipleCatalyticSitesMultienzymeComplexesHelpto Increasethe Rateof CellMetabolism168TheCellRegulatesthe CatalyticActivitiesof its Enzymes169AllostericEnzymesHaveTwoor MoreBindingSitesThatInteract 1 7 1TwoLigandsWhoseBindingSitesAreCoupledMustReciprocallyAffectEachOther'sBinding171SymmetricProteinAssembliesProduceCooperativeAllosteflcTransitions172TheAllostericTransitionin AspartateTranscarbamoylaselsUnderstoodin AtomicDetail173ManyChangesin ProteinsAre Drivenby ProteinPhosphorylation175A EucaryoticCellContainsa LargeCollectionof ProteinKinasesand ProteinPhosphatases176TheRegulationof Cdkand SrcProteinKinasesShowsHowaProteinCanFunctionasa Microchip177ProteinsThatBindand HydrolyzeGTPAreUbiquitousCellularRegulators178proteinsRegulatoryProteinsControlthe Activityof GTP-Bindingby DeterminingWhetherGTPor GDPls Bound179LargeProteinMovementsCanBeGeneratedFromSmallOnes179MotorProteinsProduceLargeMovementsin Cells181Membrane-BoundTransportersHarnessEnergyto PumpMoleculesThroughMembranes182ProteinsOftenFormLargeComplexesThatFunctionasProteinMachines184ProteinMachineswith InterchangeablePartsMakeEfficientUseof Geneticlnformation184TheActivationof ProteinMachinesOftenInvolvesPositioningThemat SpecificSites185ManyProteinsAreControlledby MultisiteCovalentModification t 6 0A ComplexNetworkof ProteinInteractionsUnderliesCellFunction 187Summary190Problems191References193Chapter4 DNA,Chromosomes,and Genomes195THESTRUCTUREANDFUNCTIONOFDNA197A DNAMoleculeConsistsof TwoComplementaryChainsof NucleotidesTheStructureof DNAProvidesa Mechanismfor HeredityIn Eucaryotes,DNAls Enclosedin a CellNucleusSummory197199200201CHROMOSOMALDNA AND ITSPACKAGINGIN THECHROMATINFIBER202EucaryoticDNAls Packagedinto a Setof Chromosomes202ChromosomesContainLongStringsof Genes204TheNucleotideSequenceofthe HumanGenomeShowsHowOurGenesAreArranged205GenomeComparisonsRevealEvolutionarilyConservedDNA)equences207ChromosomesExistin DifferentStatesThroughoutthe Lifeofa Cell2OBEachDNAMoleculeThatFormsa LinearChromosomeMustContaina Centromere,TwoTelomeres,and ReplicationOrigins 2OgDNAMoleculesAre HighlyCondensedin Chromosomes210NucleosomesArea BasicUnitof EucaryoticChromosomeStructure211TheStructureofthe NucleosomeCoreParticleRevealsHowDNAls PackagedZ'tZNucleosomesHavea DynamicStructure,and AreFrequentrySubjectedto ChangesCatalyzedby ATp-DependentChromatinRemodelingComplexes215NucleosomesAreUsuallyPackedTogetherinto a CompactChromatinFiberltoSummary218THEREGULATIONOFCHROMATINSTRUCTURESomeEarlyMysteriesConcerningChromatinStructure219220ResistantHeterochromatinls HighlyOrganizedandUnusually220to GeneExoressionModifiedat ManyDifferentSitesTheCoreHistonesAreCovalentlyChromatinAcquiresAdditionalVarietythroughthe Site-SpecificVariantslnsertionof a SmallSetof Histoneandthe HistoneVariantsAct inTheCovalentModificationsConcertto Producea "HistoneCode"ThatHelpstoFunctionDetermineBiologicalandCode-WriterProteinsCanSpreadA Comolexof Code-ReaderAlongafor LongDistancesSpecificChromatinModificationsChromosomeComplexesBlockthe Spreadof Reader-WriterBarrierDNASequencesDomainsSeparateNeighboringChromatinandTherebyHow HistoneVariantsRevealsTheChromatinin Centromereszt6CanCreateSpecialStructures230CanBeDirectlyInheritedChromatinStructuresto EucaryoticAdd UniqueFeaturesChromatinStructures231FunctionChromosome233SummaryTHEGLOBALSTRUCTUREOF CHROMOSOMES233AreFoldedinto LargeLoopsof ChromatinChromosomesChromosomesAreUniquelyUsefulfor VisualizingPolyteneChromatinStructuresThereAreMultipleFormsof HeterochromatinWhenthe GenesWithinThemAreChromatinLoopsDecondenseExoressedChromatinCanMoveto SpecificSitesWithinthe NucleustoAlterTheirGeneExoressionForma Setof DistinctBiochemicalNetworksof Macromoleculesinsidethe NucleusEnvironmentsAreFormedfrom Chromatinin lts MostMitoticChromosomesStateCondensedSummary234EVOLVEHOW GENOMES245of the NormaAreCausedby FailuresGenomeAlterationsDNAfor CopyingandMaintainingMechanismsDifferin Proportiontoof TwoSpeciesTheGenomeSequencesEvolvedthe LengthofTimeThatTheyHaveSeparatelyof DNAfrom a ComparisonTreesConstructedPhylogeneticof All OrganismsTracethe RelationshipsSequencesShowsof HumanandMouseChromosomesA ComoarisonHowthe Structuresof GenomesDivergeRatesofGenomeReflectsthe RelativeTheSizeof a VertebrateDNAAdditionand DNALossin a Lineagethe Sequenceof SomeAncientGenomesWeCanReconstructldentifylmportantDNAComparisonsMultispeciesSequenceSequencesof UnknownFunctionSequencesCanConservedChangesin PreviouslyAcceleratedHelpDecipherCriticalStepsin HumanEvolutionan lmportantSourceof GeneticGeneDuplicationProvidesNoveltyDuringEvolutionGenesDivergeDuplicatedTheEvolutionof the GlobinGeneFamilyShowsHow DNAof OrganismsContributeto the EvolutionDuplicationsCanBeCreatedby theGenesEncodingNewProteinsRecombinationof ExonsNeutralMutationsOftenSpreadto BecomeFixedin a Population,that Dependson PopulationSizewith a ProbabilityoftheVariationA GreatDealCanBeLearnedfrom AnalysesAmongHumansSummaryProblemsReferencesChapter5 DNA Replication,Repair,andRecombinationOFDNASEQUENCESTHEMAINTENANCELowMutationRatesAre Extremelyfor LifeasWe KnowltLowMutationRatesAreNecessarySummory2362562392392412432452462472482492512512s2253z>5254257257258260lou262263263205265265266MECHANISMSDNA REPLICATIONtooandDNARepairDNAReplicationUnderliesBase-Pairing266Forkls AsymmetricalTheDNAReplicationProofreadingSeveralRequiresTheHighFidelityof DNAReplicationMechanismsAllowsEfficientErrorin the 5'-to-3'DirectionOnlyDNAReplication27"1CorrectionShortRNAEnzymeSynthesizesA 5pecialNucleotide-Polymerizing272on the LaggingStrandPrimerMoleculesHelpto OpenUpthe DNADoubleHelixin FrontProteinsSpecial273Forkofthe Replication273ontothe DNAA SlidingRingHoldsa MovingDNAPolymeraseto Forma ReplicationForkCooperateat a ReplicationTheProteins275MachineReplicationMismatchRepairSystemRemovesA Strand-Directed276Machinefrom the ReplicationErrorsThatEscapePreventDNATanglingDuringReplication z I dDNATopoisomerasesandin EucaryotesSimilarls FundamentallyDNAReplication280Bacteria281SummaryOF DNA REPLICATIONAND COMPLETIONTHEINITIATION281IN CHROMOSOMES281OriginsReplicationatBeginsDNASynthesisTypicallyHavea SingleOriginof DNAChromosomesBacterial26lReolicationContainMultipleOriginsof Replication 282ChromosomesEucaryoticTakesPlaceDuringOnlyOnePartDNAReplicationIn Eucaryotes284of the cell cycleat DistinctReplicateon the SameChromosomeDifferentRegions285Timesin S PhaseLate,WhileGenesinChromatinReplicatesHighlyCondensed285EarlyTendto ReplicateChromatinLessCondensedOriginsin aServeasReplicationDNASequencesWell-Defined260the BuddingYeastSimpleEucaryote,OriginsofA LargeMultisubunitComplexBindsto Eucaryotic287ReolicationThatSpecifythe InitiationofTheMammalianDNASequences288HaveBeenDifficultto ldentifyReplication289ForkBehindthe ReplicationAreAssembledNewNucleosomesDuplicationEnsureChromosomeof EucaryoticTheMechanisms290CanBeInheriteoof HistoneModificationThatPatterns292the Endsof ChromosomesReplicatesTelomerasezY5by CellsandOrganismsLengthls RegulatedTelomere294SummaryDNA REPAIRDNADamageWouldRapidlySpontaneousWithoutDNARepair,ChangeDNASequencesTheDNADoubleHelixls ReadilyRepairedDNADamageCanBeRemovedby MoreThanOne PathwayThatthe Cell'sMostEnsuresCouplingDNARepairto TranscriptionRepairedlmportantDNAls EfficientlyDamageDetectionof the DNABasesFacilitatesTheChemistryto RepairDNAAreUsedin EmergenciesSpecialDNAPolymerasesRepairedAre EfficientlyBreaksDouble-Strandof the CellCycleDNADamageDelaysProgressionSummary295RECOMBINATIONHOMOLOGOUSHasManyUsesin the CellRecombinationHomologousin All CellsHasCommonFeaturesRecombinationHomologousRecombinationGuidesHomologousDNABase-PairingTheRecAProteinand its HomologsEnablea DNA5ingleStrandRegionof DNADoubleHelixto Pairwith a HomologousorRegionsBranchMigrationCanEitherEnlargeHetroduplexDNAasa SingleStrandNewlySynthesizedReleaseDoubleRepairCanFlawlesslyRecombinationHomologousin DNABreaksStrandedRecombinationthe Useof HomologousCellsCarefullyRegulatein DNARepairHollidayJunctionsAreOftenFormedDuringHomologousEventsRecombination304296296297299300302302303304304305305307308308310311MeioticRecombinationBeginswith a programmedDoubleStrandBreakHomologousRecombinationOftenResultsin GeneConversronpromiscuousMismatchProofreadingPreventsRecombinatronBetweenTwoPoorlyMatchedDNASequencesSummaryTRANSPOSITIONAND CONSERVATIVESITE-SPECIFICRECOMBINATION3123143155to316ThroughTransposition,MobileGeneticElementsCanInsertlntoAnyDNASequencey7DNA-OnlyTransposonsMoveby BothCut-and-pasteand ReplicativeMechanisms317SomeVirusesUsea TranspositionMechanismto MoveThemselvesintoHostCellChromosomes319Retroviral-likeRetrotransposonsResembleRetroviruses,but LackaProteinCoat320A LargeFractionof the HumanGenomels ComoosedofNonretroviralRetrotransposons32,lpredominateDifferentTransposableElementsin DifferentOrganisms322GenomeSequencesRevealthe ApproximateTimesthatTransposableElementsHaveMoved323ConservativeSite-SpecificRecombinationCanReversiblyRearrangeDNA323ConservativeSite-SpecificRecombinationWasDiscoveredinBacteriophage),n+ConservativeSite-SpecificRecombinationCanBeUsedto TurnGenesOn or Off324Summary326Problems327References328Chapter6 How CellsReadthe Genome:FromDNAto Protein329FROMDNATORNA331Portionsof DNASequenceAreTranscribedinto RNA552TranscriptionProducesRNAComplementaryto OneStrandof DNA 5 5 5CellsProduceSeveralTypesof RNA335SignalsEncodedin DNATellRNApolymeraseWhereto StartandStop336TranscriptionStartand StopSignalsAreHeterogeneousinNucleotideSequence338TranscriptionInitiationin EucaryotesRequiresManyproteins339RNAPolymerasell RequiresGeneralTranscriptionFactors340Polymerasell AlsoRequiresActivator,Mediator,andChromatinModifyingProteins342TranscriptionElongationProducesSuperhelicalTensionin DNA343TranscriptionElongationin EucaryoteslsTightlyCoupledto RNAProcessing345pre-mRNAs 346RNACappinglsthe FirstModificationof EucaryoticRNASplicingRemovesIntronSequencesfrom NewlyTranscribedPre-mRNAs347NucleotideSequencesSignalWhereSplicingOccurs349RNASplicingls Performedby the Spliceosome349TheSpliceosomeUsesATPHydrolysisto producea ComplexSeriesof RNA-RNARearrangements351OtherPropertiesof Pre-mRNAand lts SynthesisHelpto Explainthe Choiceof ProperSpliceSites352A Second5et of snRNPsSplicea SmallFractionof IntronSequencesin AnimalsandPlants353plasticityRNASplicingShowsRemarkableJ55Spliceosome-CatalyzedRNASplicingprobablyEvolvedfromSelf-SplicingMechanisms355RNA-ProcessingEnzymesGeneratethe 3, Endof EucaryoticmRNAs5 t /MatureEucaryoticmRNAsAreSelectivelyExportedfrom tneNucleus358ManyNoncodingRNAsAreAlsoSynthesizedand processedin theNucleus360TheNucleolusls a Ribosome-producingFactory502TheNucleusContainsa Varietyof SubnuclearStructures50JSummarv366FROMRNATO PROTEIN366An mRNASequencels Decodedin SetsofThreeNucleotideIRNAMoleculesMatchAminoAcidsto Codonsin mRNAtRNAsAreCovalentlyModifiedBeforeTheyExitfrom the NucleusSpecificEnzymesCoupleEachAminoAcidto ltsAppropriateIRNAMoleculeEditingby RNASynthetasesEnsuresAccuracyAminoAcidsAreAddedto the C-terminalEndof a GrowingPolypeptideChainTheRNAMessagels Decodedin RibosomesElongationFactorsDriveTranslationForwardand lmproveltsAccuracyTheRibosomels a RibozymeNucleotideSequencesin mRNASignalWhereto StartProteinSynthesisStopCodonsMarktheEndofTranslationProteinsAreMadeon PolyribosomesThereAreMinorVariationsin the StandardGeneticCodeInhibitorsof ProcaryoticProteinSynthesisAreUsefulasAntibioticsAccuracyin TranslationRequiresthe Expenditureof FreeEnergyActto PreventQualityControlMechanismsTranslationof DamaqedmRNAsSomeProteinsBeginto FoldWhileStillBeingSynthesizedMolecularChaperonesHelpGuidethe Foldingof MostproteinsExposedHydrophobicRegionsProvideCritical5ignalsfor proteinQualityControlTheProteasomelsa CompartmentalizedProteasewithSequesteredActiveSitesAn ElaborateUbiquitin-ConjugatingSystemMarksProteinsforDestructionManyProteinsAreControlledby RegulatedDestructionAbnormallyFoldedProteinsCanAggregateto CauseDestructiveHumanDiseasesThereAreManyStepsFromDNAto ProteinSummory367368369THERNAWORLDAND THEORIGINSOF LIFELifeRequiresStoredInformationPolynucleotidesCanBothStoreInformationand CatalyzeChemicalReactionsA Pre-RNAWorldMayPredatethe RNAWorldSingle-StrandedRNAMoleculesCanFoldintoHighlyElaborateStructuresSelf-ReplicatingMoleculesUndergoNaturalSelectionHow Did ProteinSynthesisEvolve?All Present-DayCellsUseDNAasTheirHereditaryMaterialSummaryProblemsReferencesChapter7 Controlof GeneExpressionAN OVERVIEWOF GENECONTROLTheDifferentCellTypesof a MulticellularOrganismContaintheSameDNADifferentCellTypesSynthesizeDifferentSetsof proteinsExternalSignalsCanCausea Cellto Changethe ExpressionofItsGenesGeneExpressionCanBeRegulatedat Manyofthe Stepsin thePathwayfrom DNAto RNAto ProteinSummary3703715t537337737937938139139238338538538738839039139339s3963gg3gg4OO4014014024034044074084084094104114'11411412413415415DNA-BINDINGMOTIFSINGENEREGULATORYPROTEINS 416GeneRegulatoryProteinsWereDiscoveredUsingBacterialGeneticsTheOutsideof the DNAHelixCanBeReadby proteinsShortDNASequencesAre FundamentalComponentsof GeneticSwitchesGeneRegulatoryProteinsContainStructuralMotifsThatCanReadDNASeouencesTheHelix-Turn-HelixMotif lsOneof the Simplestand MostCommonDNA-B|ndingMotifs416416418418419ProteinsConstitutea SpecialClassof Helix-TurnHomeodomain420HelixProteins421of DNA-B|ndingZincFingerMotifsThereAreSeveralTypesp sheetsCanAlsoRecognize422DNASomeProteinsUseLoopsThatEnterthe Majorand MinorGroove423to RecognizeDNATheLeucineZipperMotifMediatesBothDNABindingand Protein423DimerizationThatExpandsthe Repertoireof DNASequencesHeterodimerization424ProteinsCanRecognizeGeneRegulatoryand DNAMotifAlsoMediatesDimerizationTheHelix-Looo-Helix425BindingRecognizedto Predictthe DNASequencesIt ls NotYetPossible426Proteinsby All GeneRegulatoryShiftAssayReadilyDetectsSequence-SpecificA Gel-Mobility427ProteinsDNA-BindingofFacilitatesthe PurificationDNAAffinityChromatography428ProteinsDNA-BindingSequence-SpecificProteinRecognizedby a GeneRegulatoryTheDNASequence429CanBeDeterminedExperimentallySequencesFootprintingldentifiesDNARegulatoryPhylogenetic431GenomicsThroughComparativeldentifiesManyof the SitesChromatinlmmunoprecipitation431ProteinsOccupyin LivingCellsThatGeneRegulatory432Summary432WORKHOW GENETICSWITCHESGenesThatTurnsRepressorlsaSimpleSwitchTheTryptophan433On and Off in Bacteria435ActivatorsTurnGenesOnTranscriptionalRepressorActivatorand a TranscriptionalA Transcriptional435Controlthe LocOperon437GeneRegulationDNALoopingOccursDuringBacterialto HelpRNAPolymeraseSubunitsBacteriaUseInterchangeable438GeneTranscriptionRegulateComplexSwitchesHaveEvolvedto ControlGeneTranscription439in Eucaryotesof a PromoterPlusGeneControlRegionConsistsA Eucaryotic440DNASequencesRegulatoryof RNAGeneActivatorProteinsPromotethe AssemblyEucaryoticat theFactorsPolymeraseand the GeneralTranscription441Startpointof TranscriptionAlsoModifyLocalChromatinGeneActivatorProteinsEucaryotic442Structure444WorkSynergisticallyGeneActivatorProteinsProteinsCanInhibitTranscriptionGeneRepressorEucaryotic445in VariousWaysProteinsOftenBindDNAGeneRegulatoryEucaryotic445CooperativelyDevelopmentThatRegulateDrosophilaComplexGeneticSwitches447ModulesAreBuiltUp fromSmallerControls 448by CombinatorialEveGenels Regulatedfhe DrosophilaAreAlsoConstructedGeneControlRegionsComplexMammalian450Modulesfrom SimpleRegulatoryGeneThatPreventEucaryoticAre DNASequencesInsulators+)zfrom InfluencingDistantGenesProteinsRegulatory453RapidlyEvolveGeneSwitches453SummaryTHATCREATEMECHANISMSGENETICTHEMOLECULAR454CELLTYPESSPECIALIZED454inBacteriaPhaseVariationMediateDNARearrangementsCellTypein aProteinsDeterminesA Setof GeneRegulatory455BuddingYeasttheDetermineEachOther! SynthesisRepressTwo ProteinsThatLambdaHeritableStateof BacteriophageCircuitsCanBeUsedto MakeMemorySimpleGeneRegulatory458DevicesAllowthe Cellto CanyOut LogicOperations 459CircuitsTranscriptionalParts 460Biologicalfrom ExistingNewDevicesBiologyCreatesSyntheticLoopsin GeneRegulation 460ClocksAre Basedon FeedbackCircadianthe ExpressionProteinCanCoordinateA SingleGeneRegulatoryof a Setof GenesProteinCanTriggerof a CriticalGeneRegulatoryExpressionGenesof a WholeBatteryof Downstreamthe ExpressionManyDifferentCellTypesGeneControlCreatesCombinatorialin EucaryotesProteinCanTriggerthe FormationA SingleGeneRegulatoryof an EntireOrganThePatternof DNAMethylationCanBeInheritedWhenCellsDivideVertebrateon DNAMethylationlmprintingls BasedGenomicwith ManyGenesin MammalslslandsAreAssociatedCG-RichofThatStablePatternsEnsureMechanismsEpigeneticto DaughterCellsCanBeTransmittedGeneExpressionin ChromatinStructureAlterationsChromosome-WideCanBeInheritedNoisyis IntrinsicallyTheControlof GeneExpressionSummaryPTIONALCONTROLSPOST-TRANSCRITerminationthe PrematureAttenuationCausesTranscriptionof SomeRNAMoleculesAncientFormsof GeneControlMightRepresentRiboswitchesAlternativeRNASplicingCanProduceDifferentFormsof aProteinfrom the SameGeneTheDefinitionof a GeneHasHadto BeModifiedSincetheRNASplicingof AlternativeDiscoveryDependson a RegulatedDrosophiloSexDeterminationinSeriesof RNASplicingEventsand Poly-ACleavageA Changein the Siteof RNATranscriptof a ProteinAdditionCanChangethe C-terminusthe Meaningof the RNAMessageRNAEditingCanChangefrom the NucleusCanBeRegulatedRNATransportof the Cytoplasmto SpecificRegionsSomemRNAsAre LocalizedControlof mRNAsRegionsThe5'and3'UntranslatedTheirTranslationProteinof an lnitiationFactorRegulatesThePhosphorylationGloballySynthesisStartlnitiationat AUGCodonsUpstreamof the TranslationInitiationTranslationCanRegulateEucaryoticforEntrySitesProvideOpportunitiesInternalRibosomeControlTranslationGeneExpressionChangesin mRNAStabilityCanRegulatePoly-AAdditionCanRegulateTranslationCytoplasmicManyAnimalandRegulateRNATranscriptsSmallNoncodingPlantGenesls a CellDefenseMechanismRNAInterferenceFormationCanDirectHeterochromatinRNAInterferenceToolHasBecomea PowerfulExperimentalRNAlnterferenceSummoryProblemsReferences464465467468470471473476477477477478479480481482483485486488488489491492493493495496497497497499Chapter8 ManipulatingProteins,DNA,and RNA 50r501THEMINCULTUREANDGROWINGCELLSISOLATINGCellsCanBelsolatedfrom IntactTissuesCellsCanBeGrownin CultureCellLinesArea WidelyUsedSourceofEucaryoticCellsHomogeneousMedicineStemCellsCouldRevolutionizeEmbryonicMayProvidea WaytoSomaticCellNuclearTransplantationStemCellsPersonalizedGenerateThatProduceMonoclonalHybridomaCellLinesAreFactoriesAntibodiesSummary502s02PROTEINSPURIFYINGintoTheirComponentFractionsCellsCanBeSeparatedto StudyCellFunctionsSystemsProvideAccessibleCellExtractsby ChromatographyCanBeSeparatedProteinsExploitsSpecificBindingSitesonAffinityChromatographyProteinsTagsProvidean EasyWayto PurifyGenetically-EngineeredProteins51050s505s07508s10510511512513514PurifiedCell-FreeSystemsAreRequiredfor the preciseDissectionofMolecularFunctionsSummoryANALYZINGPROTEINSProteinsCanBeSeparatedby SDSpolyacrylamide-GelElectrophoresisSpecificProteinsCanBeDetectedby Blottingwith AntibodiesMassSpectrometryProvidesa HighlySensitiveMethodfor ldentifyingUnknownproteinsTwo-DimensionalpowerfulSeparationMethodsareEspeciallyHydrodynamicMeasurementsRevealthe SizeandShapeofa ProteincomolexSetsof InteractingProteinsCanBeldentifiedby BiochemicalMethodsProtein-ProteinInteractionsCanAlsoBeldentifiedby aTwo-HybridTechniquein yeastproducesCombiningDataDerivedfrom DifferentTechniquesReliableProtein-lnteractionMaDsOpticalMethodsCanMonitorProteinInteractionsin RealTimeSomeTechniquesCanMonitorSingleMoleculesProteinFunctionCanBeSelectivelyDisruptedwith SmallMoleculesProteinStructureCanBeDeterminedUsingX-RayDiffractionNMRCanBeUsedto DetermineproteinStructurein SolutronProteinSequenceand StructureprovideCluesAboutproteinFunctionSummoryANALYZINGAND MANIPULATINGDNARestrictionNucleasesCut LargeDNAMoleculesinto FragmentsGelElectrophoresisSeparatesDNAMoleculesof DifferentSizesPurifiedDNAMoleculesCanBeSpecificallyLabeledwithRadioisotopesor ChemicalMarkersin yitroprovidea SensitiveNucleicAcidHybridizationReactionsWayofDetectingSpecificNucleotideSequencesNorthernand SouthernBlottingFacilitateHybridizationwithElectrophoreticallySeparatedNucleicAcidMoleculesGenesCanBeClonedUsingDNALibrariesTwoTypesof DNALibrariesServeDifferentpuroosescDNAClonesContainUninterruptedCodingSequencesGenesCanBeSelectivelyAmplifiedby pCRCellsCanBeUsedAs Factoriesto produceSoecificproteinsProteinsand NucleicAcidsCanBeSynthesizedDirectlybyChemicalReactionsDNACanBeRapidlySequencedNucleotideSequencesAreUsedto predictthe AminoAcioSequencesof ProteinsTheGenomesof ManyOrganismsHaveBeenFullySequenceoSummarySTUDYINGGENEEXPRESSIONAND FUNCTIONClassicalGeneticsBeginsby Disruptinga Cellprocessby RanoomMutagenesisGeneticScreensldentifyMutantswith SpecificAbnormalirresMutationsCanCauseLossor Gainof proteinFunctionComplementationTestsRevealWhetherTwoMutationsArein the SameGeneor DifferentGenesGenesCanBeOrderedin Pathwaysby EpistasisAnalysisGenesldentifiedby MutationsCanBeClonedHumanGeneticsPresents5pecialproblemsandSpecialOpportunitiesHumanGenesAreInheritedin HaplotypeBlocks,WhichCanAid in the Searchfor MutationsThatCauseDiseaseComplexTraitsAre Influencedby MultipleGenesReverseGeneticsBeginswith a KnownGeneand DeterminesWhichCellProcessesRequirelts FunctionGenesCanBeRe-Engineeredin SeveralWaysEngineeredGenesCanBeInsertedintothe GermLineofManyOrganismsAnimalsCanBeGeneticallyAlteredTransgenicPlantsAre lmportantfor BothCellBiologyandAgriculture) to) to517517518519521522523523524524526J2/ill529530)Jl532s32534s35)J)s38540541544544546548548550551))z553553556558558s59s60561s63LargeCollectionsofTaggedKnockoutsProvidea ToolforExaminingthe Functionof EveryGenein an OrganismRNAInterferencels a Simpleand RapidWayto TestGeneFunctionReporterGenesand /n SituHybridizationRevealWhenanoWherea Genels ExpressedExpressionof IndividualGenesCanBeMeasuredUsinoRT-PCRQuantitativeMicroarraysMonitorthe Expressionof Thousandsof GenesatOnce5ingle-CellGeneExpressionAnalysisRevealsBiological"Noise"SummaryProblemsReferencesChapter 9 Visualizing Cells569571572573574575576576579579LOOKINGAT CELLSIN THELIGHTMICROSCOPE579TheLightMicroscopeCanResolveDetails0.2pm Aparts80LivingCellsAreSeenClearlyin a Phase-Contrastor a DifferentialInterference-ContrastMicroscooe583lmagesCanBeEnhancedandAnalyzedby DigitalTechniques583IntactTissuesAreUsuallyFixedand SectionedbeforeMicroscopy 585SpecificMoleculesCanBeLocatedin Cellsby FluorescenceMicroscopy586AntibodiesCanBeUsedto DetectSpecificMolecules588lmagingof ComplexThree-DimensionalObjectslsPossiblewith the OpticalMicroscope589TheConfocalMicroscopeProducesOpticalSectionsby ExcludingOut-of-FocusLight590FluorescentProteinsCanBeUsedtoTagIndividualproteinsinLivingCellsandOrganisms592ProteinDynamicsCanBeFollowedin LivingCells593Light-EmittingIndicatorsCanMeasureRapidlyChangingIntracellularlonConcentrations596SeveralStrategiesAreAvailableby WhichMembrane-lmpermeantSubstancesCanBeIntroducedinto Cells597LightCanBeUsedto ManipulateMicroscopicObjectsAsWellAsto lmageThem598SingleMoleculesCanBeVisualizedby UsingTotalInternalReflectionFluorescenceMicroscopy5ggIndividualMoleculesCanBeTouchedandMovedUsingAtomicForceMicroscopy600MoleculesCanBeLabeledwith Radioisotopes600RadioisotopesAreUsedtoTraceMoleculesin CellsandOrganisms602Summary603LOOKINGAT CELLSAND MOLECULESIN THEELECTRONMtcRoScoPE604TheElectronMicroscopeResolvesthe FineStructureofthe Cell604BiologicalSpecimensRequireSpecialPreparationfor the ElectronMicroscope605SpecificMacromoleculesCanBeLocalizedby lmmunogoldElectronMicroscopy606lmagesof SurfacesCanBeObtainedby ScanningElectronMicroscopy607MetalShadowingAllowsSurfaceFeaturesto BeExaminedatHighResolutionbyTransmissionElectronMicroscopy60gNegativeStainingand CryoelectronMicroscopyBothAllowMacromoleculesto BeViewedat HighResolution6l OMultiplelmagesCanBeCombinedto IncreaseResolution610DifferentViewsof a SingleObjectCanBeCombinedto GiveaThree-DimensionalReconstruction612Summaryot2Problems614Referencesot)s63564Chapter10 MembraneStructure565THELIPIDBILAYERPhosphoglycerides,Sphingolipids,andSterolsAretheMajor617L i p i d si n C e l lM e m b r a n e sP h o s p h o l i o i d sS o o n t a n e o u s l vF o r m B i l a v e r s618foo)oaJ6",7A)6TheLipidBilayerlsa Two-DimensionalFluidTheFluidityof a LipidBilayerDependson lts CompositionCanFormDomainsofDespiteTheirFluidity,LipidBilayersDifferentCompositionsMonolayerLipidDropletsAreSurroundedby a PhospholipidlmportantTheAsymmetryof the LipidBilayerls FunctionallyAre Foundon the Surfaceof All PlasmaMembranesGlycolipidsSummaryollMEMBRANEPROTEINS629with the LipidBilayerinMembraneProteinsCanBeAssociatedVariousWaysof SomeLipidAnchorsControlthe MembraneLocalizationProteinsSignalingProteinsthe PolypeptideChainCrossesIn MostTransmembranethe LipidBilayerin an o-HelicalConformationTransmembranecrHelicesOftenlnteractwith OneAnotherFormLargeTransmembraneChannelsSomep BarrelsAreGlycosylatedManyMembraneProteinsand Purifiedin DetergentsMembraneProteinsCanBeSolubilizedlsa Light-DrivenProtonPumpThatTraversesBacteriorhodopsinthe LipidBilayerasSevens HelicesOftenFunctionasLargeComplexesMembraneProteinsManyMembraneProteinsDiffusein the Planeof the Membraneand Lipidsto SpecificDomainsWithinCellsCanConfineProteinsa MembraneMechanicalStrengthGivesMembranesTheCorticalCytoskeletonand RestrictMembraneProteinDiffusionSummaryProblemsReferences622624ot>626628629629630631632634o5f636640642642645646648648650Chapter11 MembraneTransportof SmallMolecules651and the ElectricalPropertiesof MembranesPRINCIPLESOF MEMBRANETRANSPORT651to lonsLipidBilayersAreHighlylmpermeableProtein-FreeTransportProteins:of MembraneThereAreTwo MainClassesand ChannelsTransportersCoupledto anActiveTransportls MediatedbyTransportersEnergySourceSummary652AND ACTIVEMEMBRANETRANSPORTTRANSPORTERSCanBeDrivenby lon GradientsActiveTransportpHCytosolicin the PlasmaMembraneRegulateTransportersCellsin EpithelialDistributionof TransportersAn AsymmetricTransportof SolutesUnderliesthe TranscellularPumpsof ATP-DrivenThereAreThreeClassesP-typeATPaseTheCa2+Pumplsthe Best-UnderstoodthePumpEstablishesThePlasmaMembraneP-typeNa+-K+Na+GradientAcrossthe PlasmaMembraneConstitutethe LargestFamilyof MembraneABCTransportersTransoortProteinsSummary6546566526s3654o)t658oou661663667OFPROPERTIESANDTHEELECTRICALION CHANNELS667MEMBRANESand FluctuateBetweenOpenandArelon-Selectivelon Channels667closedStatesTheMembranePotentialin AnimalCellsDependsMainlyon K+Leak669and the K+GradientAcrossthe PlasmaMembraneChannelsPumpthe Na+-K+TheRestingPotentialDecaysOnlySlowlyWhen669ls StoppedK+ChannelShowsStructureof a BacterialTheThree-Dimensional671CanWorkHowan lonChannel673to lonsto WaterButlmpermeableArePermeableAquaporins675StructureTheFunctionofa NeuronDependson lts ElongatedinActionPotentialsGenerateCationChannelsVoltage-Gated676ExcitableCellsElectricallyof ActionPotentialthe Speedand EfficiencyMyelinationIncreaseso/6in NerveCellsPropagationIndividualGatedChannelsIndicatesThatRecordingPatch-Clamp680FashionOpenin an All-or-Nothingand StructurallyAre EvolutionarilyCationChannelsVoltage-Gated682RelatedConvertChemicalSignalsintolon ChannelsTransmittercated682Onesat ChemicalSynapsesElectrical684or InhibitoryCanBeExcitatoryChemicalSynapsesJunctionAreat the NeuromuscularReceptorsTheAcetylcholine684CationChannelsTransmitter-Gatedfor PsychoactiveAreMajorTargetslon ChannelsTransmitterGated686DrugsActivationthe SequentialInvolvesTransmissionNeuromuscular687of FiveDifferentSetsof lon Channels688SingleNeuronsAreComplexComputationDevicesof at Leasta CombinationNeuronalComputationRequires689ThreeKindsof K+Channels(LTP)in the MammalianHippocampusPotentiationLong-Term691ChannelsNMDA-ReceptorDependson Ca2+EntryThrough692Summary693Problems694ReferencesandCompartmentsChapter12IntracellularProteinSortingOFCELLSTHECOMPARTMENTALIZATIONSetof MembraneBasicCellsHavetheSameAllEucaryoticOrganellesEnclosedofRelationshipsOriginsExplainthe TopologicalEvolutionaryOrganellesin DifferentWaysCanMoveBetweenCompartmentsProteinsto the CorrectCellAddressDirectProteinsSignalSequencesDeNovo:TheyRequireCannotBeConstructedMostOrganellesInformationin the OrganelleltselfSummary695695695697699701702704THE NUCLEUSBETWEENOF MOLECULESTHETRANSPORT704ANDTHE CYTOSOL705EnvelopeNuclearthePerforateComplexesPoreNuclearto the Nucleus 705SignalsDirectNuclearProteinsNuclearLocalizationBindto BothNuclearLocalizationNuclearlmportReceptors707andNPCProteinsSignals708NuclearExportWorksLikeNuclearlmport,Butin ReverseThroughon TransportlmposesDirectionalityTheRanGTPase708NPCsby ControllingNPCsCanBeRegulatedTransportThrough709MachinerYto the TransPortAccess7't0DisassemblesDuringMitosisthe NuclearEnvelope712SummaryINTOMITOCHONDRIAOF PROTEINSTHETRANsPORTAND CHLOROPLASTSDependson SignalSequencesinto MitochondriaTranslocationand ProteinTranslocatorsArelmportedasUnfoldedProteinsPrecursorMitochondrialChainsPolypeptideand a MembranePotentialDriveProteinlmportATPHydrolysisIntothe MatrixSpaceto lnsertMechanismsUseSimilarandMitochondriaBacteria2PorinsintotheirOuterMembranMembraneandIntothe InnerMitochondrialTransDortSpaceOccursViaSeveralRoutesIntermembraneto the ThylakoidDirectProteinsTwoSignalSequencesin ChloroplastsMembraneSummaryPEROXISOMEStoUseMolecularOxygenand HydrogenPeroxidePeroxisomesPerformOxidativeReactionsDirectsthe lmportof ProteinsintoA ShortSignalSequencePeroxisomesSummary7137'13715716717717719720721721722t25THEENDOPLASMICRETICULUM723TheERlsStructurallyand FunctionallyDiverse724SignalSequencesWereFirstDiscoveredin proteinslmoorteointo the RoughER726A Signal-RecognitionParticle(SRp)DirectsERSignalSequencesto a SpecificReceptorin the RoughERMembrane727porein theThePolypeptideChainPassesThroughan AqueousTranslocator730TranslocationAcrossthe ERMembraneDoesNot AlwaysRequireOngoingPolypeptideChainElongation731In Single-PassTransmembraneProteins,a SingleInternalERSignalSequenceRemainsin the LipidBilayerasa Membrane-spanningo Helix732Combinationsof Start-Transferand Stop-TransferSignalsDetermineproteinsthe Topologyof MultipassTransmembrane734TranslocatedPolypeptideChainsFoldandAssemblein the Lumenof the RoughERn6MostProteinsSynthesizedin the RoughERAreGlycosylatedbythe Additionof a CommonN-LinkedOligosaccharide736OligosaccharidesAre UsedasTagsto Markthe Stateof proteinFolding738lmproperlyFoldedProteinsAre Exportedfrom the ERandDegradedin the Cytosol739MisfoldedProteinsin the ERActivatean UnfoldedproteinResoonse740SomeMembraneProteinsAcquirea CovalentlyAttachedGlycosylphosphatidylinositol(Gpl)Anchor742TheERAssemblesMostLipidBilayers743Summory745Problems746References748Chapter 13 Intracellular VesicularTrafficTHEMOLECULARMECHANISMSOFMEMBRANETRANSPORTANDTHEMAINTENANCEOFCOMPARTMENTALDIVERSITYThereAreVariousTypesof CoatedVesiclesTheAssemblyof a ClathrinCoatDrivesVesicleFormationNotAllCoatsFormBasket-likeStructuresPhosphoinositidesMarkOrganellesandMembraneDomarnsCytoplasmicProteinsRegulatethepinching-OffandUncoarrngof CoatedVesiclesMonomericGTPasesControlCoatAssemblyNotAllTransportVesiclesAreSphericalRabProteinsGuideVesicleTargetingSNAREsMediateMembraneFusionInteractingSNAREsNeedto BepriedApartBeforeTheyCanFunctionAgainViralFusionProteinsandSNAREsMayUseSimilarFusionMechanismsSummaryTRANSPORTFROMTHEERTHROUGHTHEGOLGIAPPARATUSProteinsLeavethe ERin COPII-CoatedTransportVesiclesOnlyProteinsThatAre properlyFoldedand AssembledCanLeavethe ERVesicularTubularClustersMediateTransportfrom the ERto theGolgiApparatusTheRetrievalPathwayto the ERUsesSortingSignalsManyProteinsAreSelectivelyRetainedin the CompartmentsinWhichTheyFunctionTheGolgiApparatusConsistsof an OrderedSeriesofCompartmentsOligosaccharideChainsAreProcessedin the GolgiApparatusProteoglycansAreAssembledin the GolgiApparatusWhatlsthe Purposeof GlycosyfationtTransportThroughthe GolgiApparatusMayOccurbyVesicularTransportor CisternalMaturationGolgiMatrixProteinsHelpOrganizethe StackSummory749750751754757t)I758760760toz76476476676676776776876977177177377577677777g77gTRANSPORTFROMTHE IRANSGOLGINETWORKTO LYSOSOMES779LysosomesArethe PrincipalSitesof IntracellularDigestionLysosomesAreHeterogeneousPlantand FungalVacuolesAre RemarkablyVersatileLysosomesMultiplePathwaysDeliverMaterialsto LysosomesA Mannose6-PhosphateReceptorRecognizesLysosomalProteinsin the lronsGolgiNetworkTheM6PReceptorShuttlesBetweenSpecificMembranesA SignalPatchin the HydrolasePolypeptideChainProvidesthe Cuefor M6PAdditionDefectsin the GlcNAcPhosphotransferaseCausea LysosomalStorageDiseasein HumansSomeLysosomesUndergoExocytosisSummary779780781792783784785785786786TRANSPORTINTOTHECELLFROMTHEPLASMAMEMBRANE:ENDOCYTOSIS787SpecializedPhagocyticCellsCanIngestLargeParticles787PinocyticVesiclesFormfrom CoatedPitsin the PlasmaMemorane 789Not All PinocyticVesiclesAreClathrin-Coated790CellsUseReceptor-MediatedEndocytosisto lmportSelectedExtracellularMacromolecules791EndocytosedMaterialsThatAreNot Retrievedfrom EndosomesEndUp in Lysosomes792SpecificProteinsAreRetrievedfrom EarlyEndosomesandReturnedto the PlasmaMembrane793MultivesicularBodiesFormon the Pathwayto LateEndosomes 795TranscytosisTransfersMacromoleculesAcrossEpithelialCellSheets797EpithelialCellsHaveTwoDistinctEarlyEndosomalCompartmentsbut a CommonLateEndosomalComoartment798Summory799TRANSPORTFROMTHE IRANSGOLGINETWORKTO THECELLEXTERIOR:EXOCYTOSIS799ManyProteinsand LipidsSeemto BeCarriedAutomaticallvfrom the GolgiApparatusto the CellSurface800SecretoryVesiclesBudfrom thefuonsGolgiNetwork801ProteinsAreOftenProteolyticallyProcessedDuringtheFormationof SecretoryVesicles803SecretoryVesiclesWaitNearthe PlasmaMembraneUntilSignaledto ReleaseTheirContents803RegulatedExocytosisCanBea LocalizedResponseofthePlasmaMembraneandltsUnderlyingCytoplasm804SecretoryVesicleMembraneComponentsAreeuicklyRemovedfrom the PlasmaMembrane805SomeRegulatedExocytosisEventsServeto Enlargethe plasmaMembrane80sPolarizedCellsDirectProteinsfrom the lransGolgiNetworktothe AppropriateDomainof the PlasmaMembrane805DifferentStrategiesGuideMembraneProteinsand LipidsSelectivelyto the CorrectPlasmaMembraneDomains806SynapticVesiclesCanFormDirectlyfrom EndocyticVesicles807>ummary809Problems810References812Chapter14 EnergyConversion:Mitochondriaand ChloroplastsT H EM I T O C H O N D R I O NTheMitochondrionContainsan OuterMembrane,an InnerMembrane,andTwoInternalCompartmentsTheCitricAcidCycleGeneratesHigh-EnergyElectronsA ChemiosmoticProcessConvertsOxidationEnergyinto ATpNADHTransfersits Electronsto OxygenThroughThreeLargeRespiratoryEnzymeComplexesAs ElectronsMoveAlongthe RespiratoryChain,Energyls Storedasan ElectrochemicalProtonGradientAcrossthe lnnerMembraneTheProtonGradientDrivesATPSynthesis813815916817917gl9820a2'lTheProtonGradientDrivesCoupledTransportAcrossthe InnerMembraneProduceMostof the Cell'sATPProtonGradientsMitochondriaMaintaina HighATP:ADPRatioin CellsMakesATPA LargeNegativeValueof AGfor ATPHydrolysisUsefulto the Cellto HydrolyzeATPandATPSynthaseCanFunctionin ReversePumoHrSummaryELECTRON-TRANSPORTCHAINSAND THEIRPROTOI'PUMPS822822823824826827827827ProtonsAre UnusuallyEasyto Move828TheRedoxPotentialls a Measureof ElectronAffinities829EfectronTransfersReleaseLargeAmountsofEnergyin theMethodsldentifiedManyElectronCarriersSpectroscopic829RespiratoryChainTheRespiratoryChainIncludesThreeLargeEnzymeComplexes831in the InnerMembraneEmbeddedEfficientAn lron-CopperCenterin CytochromeOxidaseCatalyzes83202 ReductionTransfersin the InnerMitochondrialMembraneAreMediatedElectron834TunnelingduringRandomCollisionsby ElectronA LargeDropin RedoxPotentialAcrossEachoftheThreeRespiratory835EnzymeComplexesProvidesthe Energyfor H+Pumpingin theThreeMajorby DistinctMechanismsTheH+PumpingOccurs835EnzymeComplexesTransportfrom ATPSynthesis 836H+lonophoresUncoupleElectronElectronFlowThroughRespiratoryControlNormallyRestrains837the Chainin BrownFatintoNaturalUncouolersConvertthe Mitochondria838Heat-GeneratingMachinesPlaysManyCriticalRolesin CellMetabolism 838TheMitochondrionMechanismsto HarnessBacteriaAlsoExploitChemiosmotic839Energy840Summary840AND PHOTOSYNTHESISCHLOROPLASTSls OneMemberof the PlastidFamilyofTheChloroplast841OrganellesResembleMitochondriaButHavean ExtraChloroplasts842CompartmentfromSunlightandUselt to FixCaptureEnergyChloroplasts843Carbonby RibuloseBisphosphateCarbonFixationlsCatalyzed844CarboxylaseThreeMoleculesEachCO2MoleculeThatls FixedConsumes845ofNADPHofATPandTwoMoleculesto FacilitateCarbonFixationin SomePlantslsCompartmentalized846Growthat LowCO2Concentrationsof ChlorophyllDependson the PhotochemistryPhotosynthesis847MoleculesReactionCenterPlusan AntennaComplexA Photochemical848Forma PhotosystemIn a ReactionCenter,LightEnergyCapturedby Chlorophyll849Createsa StrongElectronDonorfrom a WeakOneBothNADPHand ATP 850ProducesNoncyclicPhotophosphorylationCanMakeATPby CyclicPhotophosphorylationChloroplasts853WithoutMakingNADPHand AlsoResembleI and ll HaveRelatedStructures,Photosystems8s3PhotosystemsBacterialandForcelsthe Samein MitochondriaTheProton-Motive6fJChloroplastsControlin the ChloroplastInnerMembraneProteinsCarrier854with the CytosolMetaboliteExchange855AlsoPerformOtherCrucialBiosynthesesChloroplasts855SummaryANDOF MITOCHONDRIATHEGENETICSYSTEMS85sPLASTIDSContainCompleteGeneticSystems856Mitochondriaand Chloroplaststhe NumberofDetermineGrowthandDivisionOrganelle857in a CellMitochondriaandPlastids859HaveDiverseGenomesand ChloroplastsMitochondriaProbablyBothEvolvedfromand ChloroplastsMitochondria859BacteriaEndosymbioticCodonUsageand CanHaveaHavea RelaxedMitochondria861VariantGeneticCodeKnown 862Containthe SimplestGeneticSystemsAnimalMitochondria863GenesContainIntronsSomeOrganelleAboutGenomeof HigherPlantsContainsTheChloroplast863120Genesby a Non-MendelianGenesAreInheritedMitochondrial864Mechanism866in ManyOrganismsInheritedGenesAreMaternallyOrganellethe OverwhelmingDemonstratePetiteMutantsin YeastsBiogenesis 866for Mitochondrialof the CellNucleuslmportancethatProteinsContainTissue-Specificand PlastidsMitochondria867in the CellNucleusAreEncodedMakeChloroplastslmportMostof TheirLipids;Mitochondria867Mostof TheirsMayContributeto the Agingof CellsandOrganisms 606MitochondriaHaveTheirOwn Geneticand ChloroplastsWhyDo Mitochondria868Systems?870Summary870CHAINSOF ELECTRON-TRANSPORTTHE EVOLUTION870ATPtoProduceFermentationCellsProbablyUsedTheEarliestto UseChainsEnabledAnaerobicBacteriaElectron-Transoort871asTheirMajorSourceof EnergyMoleculesNonfermentableSourceof ReducingPower,ByProvidingan Inexhaustiblea MajorEvolutionaryOvercameBacteriaPhotosynthetic872ObstacleChainsof CyanobacteriaElectron-TransportThePhotosyntheticOxygenand PermittedNewLife-Forms 873AtmosphericProduced875Summary877Problems878ReferencesChapter 15 Mechanisms of Cell Communication879879OF CELLCOMMUNICATIONPRINCIPLESGENERAL880ReceptorsBindto SpecificSignalMoleculesExtracellularCanAct OverEitherShortor LongSignalMoleculesExtracellular881DistancesCellsto ShareSignalingAllowNeighboringGapJunctions884lnformationofCombinationsto Specificto RespondEachCellls Programmed884SignalMolecule5Extracellularto the SameDifferentTypesof CellsUsuallyRespondDifferently885SignalMoleculeExtracellularCellsDependson TheirPositioninTheFateof SomeDeveloping886MorphogenGradientsMoleculeof an lntracellularA CellCanAlterthe Concentration886QuicklyOnlylf the Lifetimeof the Moleculels Shortthe ActivityofNitricOxideGasSignalsby DirectlyRegulating887SpecificProteinsInsidetheTargetCellGeneRegulatoryAreLigand-ModulatedNuclearReceptors889ProteinsProteinsArelonReceptorof Cell-SurfaceTheThreeLargestClassesand Enzyme-CoupledG-Protein-Coupled,Channel-Coupled,891ReceptorsViaSmallRelaySignalsReceptorsMostActivatedCell-Surface893SignalingProteinsand a Networkof IntracellularMoleculesSwitchesasMolecularFunctionProteinsSignalingManyIntracellular895or GTPBindingThatAreActivatedby Phosphorylationthe Speed,Efficiency,EnhanceComplexesSignalingIntracellular897ofthe Responseand SpecificityBetweenModularInteractionDomainsMediatelnteractions897SignalingProteinsIntracellularAbruptlytoto RespondCellsCanUseMultipleMechanismsSignal 899ofan ExtracellularConcentrationIncreasinga GraduallyMakeUseofUsuallyNetworksSignalingIntracellular901LoopsFeedback902to a SignalSensitivityCellsCanAdjustTheir903SummarySIGNALINGTHROUGHG-PROTEIN-COUPLEDCELL(GPCRs)sURFACERECEPTORSANDSMALLINTRACELLULARMEDIATORSTrimericGProteinsRelaySignalsfromGpCRs904SomeG ProteinsRegulatethe Productionof CyclicAMpCyclic-AMP-DependentProteinKinase(pKA)MediatesMosrof the Effectsof CyclicAMPSomeG ProteinsActivateAn InositolPhospholipidSignalingPathwayby ActivatingPhospholipaseC-pCa2+Functionsasa UbiquitousIntracellularMediatorTheFrequencyof Ca2+Oscillationslnfluencesa Cell! ResponseproteinKinasesCa2+/Calmodulin-Dependent(CaM-Kinases)MediateManyof the Responsesto Ca2+Signalsin AnimalCellsSomeG ProteinsDirectlyRegulatelon ChannelsSmellandVisionDependon GPCRsThatRegulateCyclicNucleotide-GatedlonChannelsIntracellularMediatorsand EnzymaticCascadesAmplifyExtracellularSignalsphosphorylationGPCRDesensitizationDependson ReceptorSummory90s90s908909912912914916917919920921SIGNALINGTHROUGHENZYME-COUPLEDCELL-SURFACERECEPTORS921phosphorylateActivatedReceptorTyrosine(RTKs)KinasesThemselves922PhosphorylatedTyrosineson RTKsServeas DockingSitesforIntracellularSignalingProteins923Proteinswith SH2DomainsBindto phosphorylatedTyrosines924RasBelongsto a LargeSuperfamilyof MonomericGTpases926RTKsActivateRasViaAdaptorsand GEFs:Evidencefrom theDevelopingDrosophilaEye927RasActivatesa MAPKinaseSignalingModule928ScaffoldProteinsHelpPreventCross-TalkBetweenparallelMApKinaseModules930RhoFamilyGTPasesFunctionallyCoupleCell-SurfaceReceptorsto the Cytoskeleton931Pl3-KinaseProducesLipidDockingSitesin the plasmaMemorane 932ThePl-3-Kinase-AktSignalingPathwayStimulatesAnimalCellstoSurviveand Grow934TheDownstreamSignalingPathwaysActivatedBy RTKsand GpCRsOverlaov5)Tyrosine-Kinase-AssociatedReceptorsDependon CytoplasmicTyrosineKinases935CytokineReceptorsActivatethe JAK-STATSignalingpathway,Providinga FastTrackto the Nucleus937phosphorylations 9 3 8ProteinTyrosinePhosphatasesReverseTyrosineSignalProteinsof the TGFBSuperfamilyActThroughReceptorSerine/ThreonineKinasesandSmads939proteinKinasesSerine/ThreonineandTyrosineAreStructurallyRelated941BacterialChemotaxisDependson a Two-ComponentSignalingPathwayActivatedby Histidine-Kinase-AssociatedReceptors 941ReceptorMethylationls Responsiblefor Adaptationin BacterialChemotaxis943Summory944SIGNALINGPATHWAYSDEPENDENTON REGULATEDPROTEOLYSISOF LATENTGENEREGULATORYPROTEINSproteinTheReceptorProteinNotchls a LatentGeneRegulatoryWnt ProteinsBindto FrizzledReceptorsand InhibittheDegradationof p-CateninHedgehogProteinsBindto patchedRelievinglts Inhibitionof SmoothenedManyStressfuland InflammatoryStimuliActThroughanNFrB-DependentSignalingPathwaySummory946946948950952954SIGNALINGIN PLANTS955MulticellularityandCellCommunicationEvolvedIndependentlyin PlantsandAnimals955ReceptorSerine/ThreonineKinasesArethe LargestClassofCell-SurfaceReceptorsin Plantsvf,oEthyleneBlocksthe Degradationof SpecificGeneRegulatoryProteinsin the NucleusRegulatedPositioningof AuxinTransportersPatternsPlantGrowthPhytochromesDetectRedLight,andCryptochromesDetectBlueLightSummoryProblemsReferencesChapter 16 The Cytoskeleton957959960961964965THESELF-AssEMBLYAND DYNAMICSTRUCTUREOFCYTOSKELETALFILAMENTS965CytoskeletalFilamentsAre Dynamicand Adaptable966TheCytoskeletonCanAlsoFormStableStructures969EachTypeof CytoskeletalFilamentls Constructedfrom SmallerProteinSubunits970FilamentsFormedfrom MultipleProtofilamentsHaveAdvantageousProperties971Nucleationlsthe Rate-LimitingStepin the Formationofa CytoskeletalPolymer973TheTubulinandActinSubunitsAssembleHead-to-TailtoCreatePolarFilaments973MicrotubulesandActinFilamentsHaveTwoDistinctEndsThatGrowat DifferentRates975FilamentTreadmillingandDynamicInstabilityAreConsequencesof NucleotideHydrolysisbyTubulinand Actin976Treadmillingand DynamicInstabilityAid RapidCytoskeletalRearrangement980TubulinandActinHaveBeenHighlyConservedDuringEucaryoticEvolution982IntermediateFilamentStructureDependson TheLateralBundlingandTwistingof CoiledCoils983IntermediateFilamentslmpartMechanicalStabilitytoAnimalCells985DrugsCanAlterFilamentPolymerization987BacterialCellOrganizationandCellDivisionDependonHomologsofthe EucaryoticCytoskeleton999Summary991HOWCELLSREGULATETHEIRCYTOSKELETALFILAMENTS 992A ProteinComplexContainingyTubulinNucleatesMicrotubules 992MicrotubulesEmanatefromthe Centrosomein AnimalCells992ActinFilamentsAreOftenNucleatedat the PlasmaMembrane996TheMechanismof NucleationInfluencesLarge-ScaleFilamentOrganization999ProteinsThatBindto the FreeSubunitsModifyFilamentElongation999SeveringProteinsRegulatethe Lengthand KineticBehaviorofActinFilamentsandMicrotubules1000ProteinsThatBindAlongthe Sidesof FilamentsCanEitherStabilizeor DestabilizeThem1OO1ProteinsThatInteractwith FilamentEndsCanDramaticallyChangeFilamentDynamics1OO2DifferentKindsof ProteinsAlterthe Propertiesof RapidlyGrowingMicrotubuleEnds1003FilamentsAreOrganizedinto Higher-OrderStructuresin Cells1005IntermediateFilamentsAreCross-Linkedand BundledlntoStrongArrays1005Cross-LinkingProteinswith DistinctPropertiesOrganizeDifferentAssembliesof ActinFilaments1006Filaminand SpectrinFormActinFilamentWebsl OOgCytoskeletalElementsMakeManyAttachmentsto Membrane1009Summaryl0l0MOLECULARMOTORSActin-BasedMotorProteinsAreMembersof the MvosinSuperfamilyThereAreTwoTypesof MicrotubuleMotorProteins:KinesinsandDyneinsTheStructuralSimilarityof MyosinandKinesinIndicatesaCommonEvolutionaryOriginMotorProteinsGenerateForceby CouplingATPHydrolysistoConformationalChanqes10101 0 11rc1410151016AreAdaptedto CellFunctionsMotorProteinKineticsTransportof MembraneMediatethe IntracellularMotorProteinsOrganellesEnclosedLocalizesSpecificRNAMoleculesTheCytoskeletonCellsRegulateMotorProteinFunctionSummary102010211022102310251025AND CELLBEHAVIORTHE CYTOSKELETONMusclestoCausesSlidingof Myosinll andActinFilaments1026ContractInitiatesMuscleCa2+ConcentrationA SuddenRisein Cytosolic1028Contraction10 3 1EngineeredMachineHeartMusclelsa PreciselyAreMotileStructuresBuiltfrom MicrotubulesCiliaand Flagella1031andDyneinsMicrotubuleof the MitoticSpindleRequiresConstruction1034of ManyMotorProteinsDynamicsand the Interactions1036ManyCellsCanCrawlAcrossA SolidSubstratum1037DrivesPlasmaMembraneProtrusionActinPolymerizationCellAdhesionandTractionAllowCellsto PullThemselves1040ForwardMembersof the RhoProteinFamilyCauseMajorRearrangements1041of the ActinCytoskeletonExtracellularSignalsCanActivatethe ThreeRhoProtein1043FamilyMembers1045ExternalSignalsCanDictatethe Directionof CellMigrationBetweenthe Microtubuleand ActinCytoskeletonsCommunication1046and LocomotionWhole-CellPolarizationCoordinatesof NeuronsDependsSpecializationTheComplexMorphological1047on the Cytoskeleton1050Summary1050Problems1052ReferencesChapter17 The CellCycleOFTHECELLCYCLEOVERVIEWCellCyclels Dividedinto FourPhasesTheEucaryoticCell-CycleControlls Similarin All Eucaryotesby AnalysisofGeneticallyCell-CycleControlCanBeDissectedYeastMutantsin AnimalControlCanBeAnalyzedBiochemicallyCell-CycleEmbryosCellsCell-CycleControlCanBeStudiedin CulturedMammalianProgressionCanBeStudiedin VariousWaysCell-CycleSummaryTHE CELL-CYCLECONTROLSYSTEMTriggersthe MajorEventsof theTheCell-CycleControlSystemCellCycleActivatedControlSystemDependson CyclicallyTheCell-Cycle(Cdks)ProteinKinasesCyclin-Dependentand CdkInhibitoryProteins(CKls)InhibitoryPhosphorylationCdkActivityCanSuppressProteolysisControlSystemDependson CyclicalTheCell-CycleRegulationControlAlsoDependson TranscriptionalCell-Cycleasa NetworkofControlSystemFunctionsTheCell-CycleSwitchesBiochemicalSummaty5 PHASEOncePerCycleS-CdkInitiatesDNAReplicationDuplicationof ChromatinDuplicationRequiresChromosomeStructureTogetherHelpHoldSisterChromatidsCohesinsSummory10531054105410561056105710591059106010601060106210631064I uof,1065't067't0671067106910701071MITOSIS1071M-CdkDrivesEntryInto MitosisM-Cdkat the Onsetof MitosisActivatesDephosphorylationforChromosomesHelpsConfigureDuplicatedCondensinSeparationMachineTheMitoticSpindlels a Microtubule-Based1071107410751075GovernSpindleMotorProteinsMicrotubule-Dependentand FunctionAssemblyof a BipolarMitoticin the AssemblyCollaborateTwoMechanismsSoindleOccursEarlyin the CellCycleDuplicationCentrosomein ProphaseM-CdkInitiatesSpindleAssemblyin AnimalCellsRequiresTheCompletionof SpindleAssemblyBreakdownNuclearEnvelopeGreatlyin MitosisMicrotubuleInstabilityIncreasesPromoteBipolarSpindleAssemblyMitoticChromosomesto the SpindleAttachSisterChromatidsKinetochoresls AchievedbyTrialand ErrorBi-Orientationon the SpindleMultipleForcesMoveChromosomesandtheSeparationTriggersSister-ChromatidTheAPC/CCompletionof MitosisSeparation:BlockSister-ChromatidChromosomesUnattachedCheckPointTheSpindleAssemblYA and Bin AnaphaseSegregateChromosomesin DaughterNucleiatArePackagedChromosomesSegregatedTeloohaseMeiosisls a SoecialFormof NuclearDivisionInvolvedin SexualReproductionSummory10771077l 07810781079108010811082108310851087108810891o9o109010921092CYTOKINESISfortheForceRingGenerateActinand Myosinll in the Contractile1093Cytokinesisof theandContractionLocalActivationof RhoATriggersAssembly1094RingContractilethe Planeofof the MitoticSpindleDetermineTheMicrotubules1095AnimalCellDivision1097in HigherPlantsGuidesCytokinesisThePhragmoplastto DaughterMustBeDistributedOrganellesMembrane-Enclosed1098CellsDuringCytokinesisTheirSpindleto DivideAsymmetrically 1099SomeCellsReposition1099MitosisCanOccurWithoutCytokinesis1100TheG1Phasels a StableStateof Cdklnactivity11 0 1SummaryCONTROLOF CELLDIVISIONAND CELLGROWTHMitogensStimulateCellDivisionNondividingCellsCanDelayDivisionby Enteringa SpecializedStateActivitiesMitogensStimulateGr-Cdkand GrlS-CdkTheDNADamageResponseDNADamageBlocksCellDivision:on the NumberManyHumanCellsHavea Built-lnLimitationof TimesTheyCanDivideArrestorSignalsCauseCell-CycleAbnormalProliferationExceptin CancerCellsApoptosis,OrganismandOrganGrowthDependon CellGrowthTheirGrowthand DivisionCellsUsuallyCoordinateProliferatingSignalProteinsCellsCompetefor ExtracellularNeighboringCellMassby UnknownMechanismsAnimalsControlTotalSummaryProblemsReferencesChapter18 APoPtosis11 0 111 0 21103110311051oo71107r 10811 0 81110111111121112111311 1 51115UnwantedCellsCellDeathEliminatesProgrammed1117RecognizableApoptoticCellsAreBiochemicallyCascadeProteolyticApoptosisDependson an Intracellular1118Thatls MediatedbYCasPasesPathwayActivatethe ExtrinsicDeathReceptorsCell-Surface1120ofApoptosis1121TheIntrinsicPathwayof ApoptosisDependson Mitochondria1121the IntrinsicPathwayof ApoptosisBcf2ProteinsRegulate1124lAPsInhibitCaspases'1126WaysVariousinApoptosisInhibitFactorsSurvivalExtracellularto Disease1127CanContributeApoptosisor InsufficientEitherExcessive1128Summary1128problems1129ReferencesChapter19 CellJunctions,CellAdhesion,andthe ExtracellularMatrixCADHERINSANDCELL-CELLADHESIONI 13111 3 3CadherinsMediateCa2+-DependentCell-CellAdhesioninAllAnimalsTheCadherinSuperfamilyin VertebratesIncludesHundredsofDifferentProteins,IncludingManywith SignalingFunctionsCadherinsMediateHomophilicAdhesion5electiveCell-CellAdhesionEnablesDissociatedVertebrareCellsto Reassembleinto OrganizedTissuesCadherinsControlthe SelectiveAssortmentof CellsTwistRegulatesEpithelial-MesenchymaI TransitionsCateninsLinkClassicalCadherinsto the ActinCytoskeletonAdherensJunctionsCoordinatethe Actin-BasedMotilityofAdjacentCellsDesmosomeJunctionsGiveEpitheliaMechanicalStrenqthCell-CellJunctionsSendSignalsintothe CellInteriorSelectinsMediateTransientCell-CellAdhesionsin theBloodstreamMembersof the lmmunoglobulin5uperfamilyof proteinsMediateCa2+-lndependentCell-CellAdhesionManyTypesof CellAdhesionMoleculesAct in parallelto Createa SynapseScaffoldProteinsOrganizeJunctionalComplexesSummary114711 4 81149TIGHTJUNCTIONSAND THEORGANIZATIONOFEPITHELIA11 5 011 3 5tt501137139140141142114211431"t4511451146TightJunctionsForma SealBetweenCellsand a FenceBetweenMembraneDomainsplaya KeypartInScaffoldProteinsin JunctionalComplexesthe Controlof CellProliferationCell-CellJunctionsandthe BasalLaminaGovernAoico-BasalPolarityin EpitheliaplanarCellpolarityA SeparateSignalingSystemControlsSummary11 5 5115711 5 8PASSAGEWAYSFROMCELLTO CELL:GAp JUNCT|ONSAND PLASMODESMATA11 5 811 5 011 5 3GapJunctionsCoupleCellsBothElectricallyandMetabolicallyA Gap-JunctionConnexonlsMadeUp of SixTransmembraneConnexinSubunitsGapJunctionsHaveDiverseFunctionsCellsCanRegulatethe Permeabilityof TheirGapJunctionsperformManyof the SameFunctionsIn Plants,PlasmodesmataasGapJunctionsSummary116211 6 3THEBASALLAMINA^t't64BasalLaminaeUnderlieAll EpitheliaandSurroundSomeNonepithelialCellTypesLamininlsa PrimaryComponentof the BasalLaminaTypelV CollagenGivesthe BasalLaminaTensileStrenothBasalLaminaeHaveDiverseFunctionsSummaryINTEGRINSAND CELL-MATRIXADHESIONIntegrinsAreTransmembraneHeterodimersThatLinkto tneCytoskeletonIntegrinsCanSwitchBetweenan Activeand an InactiveConformationIntegrinDefectsAre Responsiblefor ManyDifferentGeneticDiseasesIntegrinsClusterto FormStrongAdhesionsExtracellularMatrixAttachmentsActThroughIntegrinstoControlCellProliferationand SurvivalproteinsIntegrinsRecruitIntracellularSignalingat Sitesof CellSubstratumAdhesionIntegrinsCanProduceLocalizedIntracellularEffectsSummoryTHEEXTRACELLULARMATRIXOFANIMALCONNECTIVETlsSuES1178TheExtracellularMatrixls Madeand Orientedby the Cellsj179Withinlt(GAG)ChainsOccupyLargeAmountsofGlycosaminoglycanSpaceandFormHydratedGels1179HyaluronanActsasa SpaceFilleranda Facilitatorof CellMigrationDuringTissueMorphogenesisandRepair1180ProteoglycansAreComposedof GAGChainsCovalentlyLinkedto a CoreProtein11 8 1ProteoglycansCanRegulatethe Activitiesof SecretedProterns 1182Cell-SurfaceProteoglycansAct asCo-Receptors11 8 3CollagensArethe MajorProteinsof the ExtracellularMatrix1184CollagenChainsUndergoa Seriesof Post-TranslationalModifications11 8 6PropeptidesAreClippedOff ProcollagenAfterlts Secretionto AllowAssemblyof Fibrils1187't187SecretedFibril-AssociatedCollagensHelpOrganizethe FibrilsCellsHelpOrganizethe CollagenFibrilsTheySecretebyExertingTensionon the Matrix11 8 9ElastinGivesTissuesTheirElasticitv11 8 9Fibronectinls an ExtracellularProteinThatHelpsCellsAttachto the Matrix1191TensionExertedby CellsRegulatesAssemblyof Fibronectin't't91FibrilsFibronectinBindsto IntegrinsThroughan RGDMotif11 9 3CellsHaveto BeAbleto DegradeMatrix,asWellasMakeit11 9 3MatrixDegradationls Localizedto the Vicinityof Cells1194Summary1195THEPLANTCELLWALLTheCompositionof the CellWallDependson the CellTypeTheTensileStrengthof the CellWallAllowsPlantCellstoDevelopTurgorPressureThePrimaryCellWallls BuiltfromCelluloseMicrofibrilsInterwovenwith a Networkof PecticPolysaccharidesOrientedCell-WallDepositionControlsplantCellGrowthMicrotubulesOrientCell-WallDepositionSummaryProblemsReferences11 9 511 9 5't't9711971199120012021202120411 5 811 5 911 6 111 6 1116411 6 5't16611671169116911701"170"117211741175117611 7 71178Chapter20 CancerCANCERA5A MICROEVOLUTIONARYPROCESSCancerCellsReproduceWithoutRestraintand ColonizeOtherTissuesMostCancersDerivefrom a SingleAbnormalCellCancerCellsContainSomaticMutationsA SingleMutationls Not Enoughto CauseCancerCancersDevelopGraduallyfromIncreasinglyAberrantCellsCervicalCancersAre Preventedby EarlyDetectionTumorProgressionInvolvesSuccessiveRoundsof RandomInheritedChangeFollowedby NaturalSelectionTheEpigeneticChangesThatAccumulatein CancerCellsInvolveInheritedChromatinStructuresandDNAMethylationHumanCancerCellsAreGeneticallyUnstableCancerousGrowthOftenDependson DefectiveControlofCellDeath,CellDifferentiation,or BothCancerCellsAre UsuallyAlteredin TheirResponsesto DNADamageand OtherFormsof StressHumanCancerCellsEscapea Built-lnLimitto CellproliferationA SmallPopulationof CancerStemCellsMaintainsManyTumorsHow Do CancerStemCellsArise?To Metastasize,MalignantCancerCellsMustSurviveandProliferatein a ForeignEnvlronmentTumorsInduceAngiogenesisTheTumorMicroenvironmentInfluencesCancerDevelopmentManyPropertiesTypicallyContributeto CancerousGrowthSummary1205120512061207I 2081209121012111212121312141215121612'.t71217121812201220122212231223CAU5E5OF CANCERTHEPREVENTABLE1224AgentsDamageDNAMany,ButNotAll,Cancer-CausingDo NotDamageDNA;TumorPromotersTumorInitiatorsContributeto a SignificantVirusesandOtherInfectionsof HumanCancersProportionRevealsWaysto Avoidldentificationof CarcinogensCancerSummary122512261227122912301230GENESFINDINGTHECANCER-CRITICALand Loss-of-Functionof Gain-of-FunctionTheldentification1231MutationsRequiresDifferentMethodsThatAlterCanAct asVectorsfor OncogenesRetroviruses1232CellBehavioron thefor OncogenesHaveConvergedDifferentSearches1233SameGene-RasFirstldentifiedCancerSyndromesof RareHereditaryStudies1234GenesTumorSuppressorfromStudiesGenesCanAlsoBeldentifiedTumorSuopressorIl5>of TumorsTumorMechanismsCanInactivateandEpigeneticBothGenetic1235GenesSuppressorin ManyCanBeMadeOveractiveGenesMutatedin Cancer1237Ways1239GenesContinuesTheHuntfor CancerCritical1240Summary1240BEHAVIORBASISOF CANCER-CELLTHEMOLECULAREmbryosandGeneticallyof BothDevelopingStudiesofthe FunctionMiceHaveHelpedto UncoverEngineered1241GenesCancer-Critical1242CellProliferationGenesRegulateManyCancer-Criticalof Cell-CycleMayMediatethe DisregulationDistinctPathwaysof CellGrowthinandthe DisregulationProgression1244CellsCancerCellsAllowCancerThatRegulateApoptosisin GenesMutations1245WhenTheyShouldNotto SurviveCellsto Survivein thep53GeneAllowManyCancerMutations1246DespiteDNADamageand ProliferateBlockthe Actionof KeyTumorSuppressorDNATumorViruses1247ProteinsAreStillThatLeadto Metastasisin TumorCellsTheChanges1249Largelya Mysteryof Visiblea SuccessionEvolveSlowlyViaColorectalCancers1250ChangesAreCommonto a LargeFractionofA FewKeyGeneticLesions1251ColorectalCancersRepair 1254in DNAMismatchCancersHaveDefectsSomeColorectalwithCanOftenBeCorrelatedTheStepsof TumorProgression1254MutationsSDecificby lts Own Arrayof GeneticEachCaseof CancerlsCharacterizedI z)oLesionsIz>oSummaryAND FUTUREPRESENTTREATMENT:CANCERbut Not HopelessCureslsDifficultforCancerTheSearchandLossofInstabilityExploitthe GeneticTraditionalTherapiesin CancerCellsResponsesCheckpointCell-CycleGeneticof a Tumor'sCausethe SpecificNewDrugsCanExploitInstabilityMoreBecomeProgressivelyGeneticInstabilityHelpsCancersResistantto Therapiesof CancerAreEmergingfrom Our KnowledgeNewTherapiesBiologyOncogenicto InhibitSpecificCanBeDesignedSmallMoleculesProteinsAreLogicalTargetsfor CancerTherapyTumorBloodVesselsthe lmmuneby EnhancingMayBeTreatableManyCancersTumorAgainsta SpecificResponseHaswith SeveralDrugsSimultaneouslyPatientsTreatingfor CancerTherapyPotentialAdvantagesintoCancersProfilingCanHelpClassifyGeneExpressionSubgroupsMeaningfulClinically1256125712571257125912601260I loz| 202| 20512641264126512651267Therels StillMuchMoreto DoSummoryproblemsReferencesChapters21-25 availableon Media DVD-ROMMeiosis,Chapter2t SexualReproduction:FertilizationGermCells,and1269OF SEXUALREPRODUCTIOIIOVERVIEWls BriefTheHaploidPhasein HigherEucaryotesDiversityGeneticCreatesMeiosisAdvantagea CompetitiveGivesOrganismsSexualReproductionSummary126912691271127112721272ME|OS|S1272byTwoMeioticCellDivisionsAreProducedGametesPairDuringEarly(andSexChromosomes)HomologsDuplicated1274proohase1aSynaptonemalofFormationintheCulminatesPairingHomolog1275ComplexKinetochoreDependson Meiosis-Specific,HomologSegregation1276ProteinsAssociated1278GoesWrongFrequentlyMeiosis1279GeneticReassortmentEnhancesCrossing-Over1280ls HighlyRegulatedCrossing-Over1280Mammalsin MaleandFemaleDifferentlylsRegulatedMeiosis1281SummaryINGERMCELLSAND sEXDETERMINATIONPRIMORDIALMAMMALSSignalsfrom NeighborsSpecifyPGCsin MammalianEmbryosGonadsMigrateintothe DevelopingPGCSGonadtoTheSryGeneDirectsthe DevelopingMammalianBecomea TestisVaryGreatlybetweenManyAspectsof SexualReproductionAnimalsPeciesSummary128212821283128312851286EGGS1287for IndependentDevelopmentAn Eggls HighlySpecializedEggsDevelopin Stagesto Growto TheirLargeSizeOocytesUseSpecialMechanismsMostHumanOocytesDieWithoutMaturingSummary12871288129012911292't292SPERMTheirDNAto an EggSpermAre HighlyAdaptedfor DeliveringTestisin the MammalianContinuouslySpermAreProducedSpermDevelopasa SYncYtiumSummary12921293129412961297FERTILIZATIONin the FemaleGenitalTract 1297SpermBecomeCapacitatedEjaculatedand UndergoanPellucidaZonatotheBindSpermCapacitated1298AcrosomeReaction1298of Sperm-EggFusionls StillUnknownTheMechanismCa2+in the Cytosol 1299the Eggby IncreasingSpermFusionActivatesOnlyOneSpermFertilizesTi'reCorticalReactionHelpsEnsureThat1300the EggasWellaslts Genometo the Zygote1301CentriolesTheSoermProvidestheTreatmentof HumanIVFand lCSlHaveRevolutionized1301Infertility1303Summary1304Referencesof MulticellularChapter22 DevelopmentOrganisms1305OFANIMALDEVELOPMENT 1305MECHANISMSUNIVERSAL1307FeaturesAnatomicalBasicSomeShareAnimalsMulticellularAnimalsAreEnrichedin proteinsMediatinoCellInteractionsandGeneRegulation1308RegulatoryDNADefinesthe programof Development1309Manipulationof the EmbryoRevealsthe InteractionsBetweenItsCells13 1 0Studiesof MutantAnimalsldentifythe GenesThatControlDevelopmentalProcesses131A CellMakesDevelopmentalDecisionsLongBeforelt Showsa VisibleChange131CellsHaveRememberedPositionalValuesThatReflectTheirLocationin the Body1312InductiveSignalsCanCreateOrderlyDifferencesBetweenInitiallyldenticalCells13 1 3SisterCellsCanBeBornDifferentby an AsymmetricCellDivision1313PositiveFeedbackCanCreateAsymmetryWhereThereWasNoneBefore1314patterns,PositiveFeedbackGeneratesCreatesAll-or-NoneOutcomes,and ProvidesMemoryt5t)A SmallSetof SignalingPathways,UsedRepeatedly,ControlsDevelopmentalPatterning13 1 6MorphogensAreLong-RangeInducersThatExertGradedEffects 13 1 6ExtracellularInhibitorsof SignalMoleculesShapethe Responseto the Inducer1317DevelopmentalSignalsCanSpreadThroughTissuein SeverarDifferentWays13 1 8ProgramsThatAreIntrinsicto a CellOftenDefinethe Time-Courseof its Develooment1319InitialPatternsAreEstablishedin SmallFieldsof CellsanoRefinedby SequentialInductionasthe EmbrvoGrows13 1 9Summory1320CAENORHABDITISELEGANS:DEVELOPMENTFRoM THEPERSPECTIVEOFTHEINDIVIDUALCELLCaenorhabditiselegansls AnatomicallySimpleCellFatesin the DevelopingNematodeAreAlmostperfectlyPredictableProductsof Maternal-EffectGenesOrganizethe AsymmetricDivisionof the EggProgressivelyMoreComplexpatternsAreCreatedby Cell-CellInteractionsMicrosurgeryandGeneticsRevealthe Logicof DevelopmentalControl;GeneCloningandSequencingRevealltsMolecularMechanismsCellsChangeOverTimein TheirResponsivenesstoDevelopmentalSignalsHeterochronicGenesControlthe Timingof DevelopmentCellsDo NotCountCellDivisionsin TimingTheirInternalProgramsSelectedCellsDie by Apoptosisaspartof the proqramofDevelopmentSummary13 2 1't321132213231324| 5l)13251326132713271328DROSOPHILAAND THEMOLECULARGENETICSOFPATTERNFORMATION:GENESISOFTHEBODYPLAN1328TheInsectBodylsConstructedasa Seriesof SegmentalUnits1329DrosophiloBeginslts Developmentasa Syncytium1330GeneticScreensDefineGroupsofGenesRequiredfor SpecificAspectsof EarlyPatterning1332Interactionsof the OocyteWith lts SurroundingsDefinetheAxesof the Embryo:the Roleof the Egg-polarityGenes13 3 3TheDorsoventralSignalingGenesCreatea Gradientof aproternNuclearGeneRegulatory1334DppandSogSetUp a SecondaryMorphogenGradienttoRefinethe Patternof the Dorsalpartof the Embrvo1336TheInsectDorsoventralAxisCorrespondsto the VeriebrateVentrodorsalAxis1336ThreeClassesof SegmentationGenesRefinethe Anterior_posteriorMaternalPatternand Subdividethe Embrvo1336TheLocalizedExpressionof SegmentationGenesls Regulatedby a Hierarchyof PositionalSignals1337TheModularNatureof RegulatoryDNAAllowsGenesto HaveMultipleIndependentlyControlledFunctionsI 339Egg-Polarity,Gap,andPair-RuleGenesCreateaTransientPatternThatlsRememberedbvOtherGenesSummaryHOMEOTICSELECTORGENESANDTHEPATTERNINGOFTHEANTEROPOSTERIORAXISThe Hox Code SpecifiesAnterior-PosteriorDifferencesproteinsHomeoticSelectorGenesCodefor DNA-BindingThatlnteractwith OtherGeneRegulatoryProteinsTheHomeoticSelectorGenesAreExpressedSequentiallyAccordingto TheirOrderin the HoxComplexTheHoxComplexCarriesa PermanentRecordof PositionalInformationTheAnteroposteriorAxisls Controlledby HoxSelectorGenesInvertebratesAlsoSummary134013411341134213421343134413441347ORGANOGENESISAND THEPATTERNINGOFAPPENDAGES1347ConditionalandInducedSomaticMutationsMakeit possibletoAnalyzeGeneFunctionsLatein Development1348BodyPartsof the Adult FlyDevelopFromlmaginalDiscs1349HomeoticSelectorGenesAre Essentialfor the MemoryofPositionalInformationin lmaginalDiscCellstSflSpecificRegulatoryGenesDefinethe CellsThatWillFormanAppendage13 5 1TheInsectWingDisclsDividedintoCompartments1352FourFamiliarSignalingPathwaysCombineto PatterntheWingDisc:Wingless,Hedgehog,Dpp,and NotchI 353TheSizeof EachCompartmentls Regulatedby InteractionsAmongltsCells13 s 3SimilarMechanismsPatternthe Limbsof Vertebrates1355LocalizedExpressionof SpecificClassesof GeneRegulatoryProteinsForeshadowsCellDifferentiation1356LateralInhibitionSinglesOut SensoryMotherCellsWithinProneuralClusters1357LateralInhibitionDrivesthe Progenyof the SensoryMotherCellTowardDifferentFinalFates857PlanarPolarityof AsymmetricDivisionsisControlledby Signalingviathe ReceptorFrizzled1359AsymmetricStem-CellDivisionsGenerateAdditionalNeuronsin the CentralNervousSystem1359AsymmetricNeuroblastDivisionsSegregatean Inhibitorof CellDivisionintoJustOneof the DaughterCells1361patternofNotchSignalingRegulatesthe Fine-GrainedDifferentiatedCellTypesin ManyDifferentTissues1362SomeKeyRegulatoryGenesDefinea CellType;OthersCanActivatethe Programfor Creationof an EntireOrgan1362Summary1363CELLMOVEMENTSAND THESHAPINGOFTHEVERTEBRATEBODY1363ThePolarityof the AmphibianEmbryoDependson the polarityof the Egg1364CleavageProducesManyCellsfrom Onel 365GastrulationTransformsa HollowBallof Cellsinto a Three-LaveredStructurewith a PrimitiveGutI JO)predictableTheMovementsof GastrulationArePrecisely| 500ChemicalSignalsTriggerthe MechanicalProcesses1367ActiveChangesof CellPackingProvidea DrivingForceforGastrulation1368ChangingPatternsof CellAdhesionMoleculesForceCellsIntoNewArrangements1369TheNotochordElongates,Whilethe NeuralplateRollsUp roFormthe NeuralTube1370A Gene-ExpressionOscillatorControlsSegmentationof the't371Mesodermlnto SomitesDelayedNegativeFeedbackMayGeneratethe Oscillationsof the SegmentationClock1373EmbryonicTissuesAreInvadedin a StrictlyControlledFashionby MigratoryCells1373TheDistributionof MigrantCellsDependson SurvivalFactorsasWellasGuidanceCues1375Left-RightAsymmetryof theVertebrateBodyDerivesFromin the EarlyEmbryoMolecularAsymmetrySummary1376T H EM O U S E1378PreambleBeginsWitha SpecializedMammalianDevelopmentEmbryols HighlyRegulativeTheEarlyMammalianTotipotentEmbryonicStemCellsCanBeObtainedFromaEmbryoMammalianGenerateBetweenEpitheliumandMesenchymeInteractionsTubularStructuresBranchingSummary13781380NEURALDEVELOPMENT13 8 3ltt I138013 8 11382Accordingto theNeuronsAreAssignedDifferentCharacters1383Timeand PlaceWhereTheyAreBorntheAssignedto a Neuronat lts BirthGovernsTheCharacter1385lt WillFormConnectionsEachAxonor DendriteExtendsby Meansof a GrowthConeat1386ItsTipTheGrowthConePilotsthe DevelopingNeuriteAlonga Precisely1387DefinedPath/n Vlvo1389asTheyTravelSensibilitiesGrowthConesCanChangeTheirNeurotrophicFactorsThatControlNerveTargetTissuesRelease1389CellGrowthand SurvivalGuidesthe Formationof OrderlyNeuralNeuronalSpecificity1391MapsAxonsFromDifferentRegionsof the RetinaRespondDifferently| sYZin theTectumof ReoulsiveMoleculesto a GradientAreSharpenedbyof SynapticConnectionsDiffusePatterns1393RemodelingActivity-Dependentin theMoldsthe Patternof SynapticConnectionsExperience1395BrainMaySynapseRemodelingAdultMemoryandDevelopmental1396MechanismsDependon Similar1397SummaryPLANTDEVELOPMENT1398ArabidopsisServesasa ModelOrganismfor PlantMolecular1398GeneticsControGenomels Richin Developmentalfhe Arabidopsis1399Genesa Root-ShootDevelopmentStartsby EstablishingEmbryonic1400AxisandThenHaltsInsidethe Seed1403by MeristemsSequentiallyThePartsof a PlantAreGenerated'1403Signalson Environmentalof the SeedlingDependsDevelopmentEventsCoordinateDevelopmentalHormonalSignalsLong-Range1403in SeparatePartsofthe PlantTheShapingof EachNewStructureDependson Oriented1406andExoansionCellDivisionSetof PrimordiaEachPlantModuleGrowsFroma Microscopic1407in a MeristemAuxinTransportControlsthe Patternof PrimordiaPolarized1408in the Meristem1409the MeristemMaintainsCellSignalingPlantTopologybyMutationsCanTransformRegulatory1410in the MeristemAlteringCellBehaviorTheSwitchto FloweringDependson Pastand Present1412EnvironmentalCues1413HomeoticSelectorGenesSpecifythe Partsof a Flower1415Summary1415ReferencesTissues,StemCells,Chapter23 Specializedand TissueRenewalBYSTEMCELLSANDIT5RENEWALEPIDERMIS'a41714171419BarrierWaterproofEpidermalCellsForma Multilayeredof DifferentCellsExpressa SequenceEpidermalDifferentiating1420GenesasTheyMatureStemCellsin the BasalLayerProvidefor Renewalof the Epidermis1420of a StemCellDo Not AlwaysHavetoTheTwo Daughters1421BecomeDifferentTheBasalLayerContainsBothStemCellsandTransitAmplifyingCellsArePartof the Strategyof GrowthTransitamplifyingDivisionsControlDNAOriginalRetainSelectivelyStemCellsof SomeTissuesStrandsDramaticallyDivisionCanIncreaseTheRateof Stem-CellWhenNewCellsAre NeededUrgentlYRenewalGovernEpidermalSignalsManyInteractingandCyclesof DevelopmentTheMammaryGlandUndergoesRegressionSummaryEPITHELIASENSORYReplacedOlfactorySensoryNeuronsAreContinuallyAuditoryHairCellsHaveto Lasta LifetimeCellsRenewTheirParts:the PhotoreceptorMostPermanentCellsof the RetinaSummary1422142314241425142614261428142914291430't43214331434ANDTHEGUTTHEAIRWAYS1434Lungsofthein the AlveoliAdjacentCellTypesCollaboratetoCollaborateandMacrophagesCells,CiliatedGobletCells,1434Keepthe AirwaysCleanltselfFasterThanRenewsTheLiningof the SmallIntestine1436AnyOtherTissue1438Compartmentthe GutStem-CellMaintainsWntSignaling1439GutCellDiversificationControlsNotchSignalingof GutEpithelialthe MigrationsControlsSignalingEphrin-Eph1440CellsCombinePathwaysandBMPSignalingPDGF,Wnt,Hedgehog,1441Nicheto Delimitthe Stem-CellTractasan InterfaceBetweenthe DigestiveTheLiverFunctions1442andthe Blood"t443LiverCellProliferationLiverCellLossStimulatesInsulinDoesNot Haveto Dependon StemCells:RenewalTissue1444Cellsin the PancreasSecreting1445SummaryAND ENDOTHELIALLYMPHATICS,BLOODVEsSEL5,1445CELLS1445andLymphaticsCellsLineAll BloodVesselsEndothelial1446AngiogenesisTipCellsPioneerEndothelialofVessel 1447CellsFormDifferentTypesof EndothelialDifferentTypesNotchSignalingVEGF;a BloodSupplyReleaseRequiringTissues1448the ResponseCellsRegulatesEndothelialBetweenof PericytesCellsControlRecruitmentfrom EndothelialSignals1450Walland SmoothMuscleCellsto Formthe Vessel1450SummaryBLOODCELLSTEMCELLS:BYMULTIPOTENTRENEWAL1450FORMATIONGranulocytes,AreCellsof WhiteBloodTheThreeMainCategories1451and LYmPhocytesMonocytes,of EachTypeof BloodCellin the BoneMarrowlsTheProduction1453ControlledIndividually1454StemCellsHemopoieticBoneMarrowContains1456of BloodCellsA MultipotentStemCellGivesRiseto All Classes|+)oProcessCommitmentls a StePwiseofNumbertheAmplifyCellsProgenitorofCommittedDivisions1457BloodCellsSpecialized1458StemCellsDependon ContactSignalsFromStromalCellsCanBeAnalyzedin Culture 1459HemopoiesisThatRegulateFactors1459Dependson the HormoneErythropoietinErythropoiesisProduction 1460andMacrophageNeutrophillnfluenceMultipleCSFs1461CellDependsPartlyon Chanceof a HemopoieticTheBehaviorof CelllsaslmportantasRegulationof CellSurvivalRegulation1462Proliferation1462SummaryOFAND REGENERATIONMODULATION,GENESIS,MUSCLESKELETALFuseto FormNewSkeletalMuscleFibersMyoblasts14631464MuscleCellsCanVaryTheirPropertiesby Changingthe proteinfsoformsTheyContain1465SkeletalMuscleFibersSecreteMyostatinto LimitTheirOwnGrowth 1465SomeMyoblastsPersistaseuiescentStemCellsin the Adult:|466Summary1467FIBROBLASTSANDTHEIRTRANSFORMATTONS:THECONNECTIVE-TISSUECELLFAMILY1467F i b r o b l a s tCs h a n g eT h e i rC h a r a c t e ri n R e s p o n s et o C h e m i c a lSignalsT h e E x t r a c e l l u l aMr a t r i x M a y I n f l u e n c eC o n n e c t i v e - T i s s uCee l lDifferentiation by Affecting Cell Shape and AttachmentOsteoblastsMake Bone MatrixM o s t B o n e sA r e B u i l t A r o u n d C a r t i l a g eM o d e l sB o n e l s C o n t i n u a l l yR e m o d e l e db y t h e C e l l sW i t h i n l tOsteoclastsAre Controlled by SignalsFrom OsteoblastsFat CellsCan Develop From FibroblastsLeptin Secretedby Fat CellsProvidesFeedbackto Requlate14671468i46g1470lr47214731474EatingSummary14751476S T E M - C E LELN G I N E E R I N G1476HemopoieticStemCellsCanBeUsedto ReplaceDiseasedBloodCellswith HealthyOnes1477EpidermalStemCellPopulationsCanBeExpandedin CultureforTissueRepair1477NeuralStemCellsCanBeManipulatedin Cultureir478NeuralStemCellsCanRepopulatethe CentralNervousSystem147gStemCellsin the Adult BodyAreTissue-Specific1479ESCellsCanMakeAnyPartofthe Body1480Patient-SpecificESCellsCouldSolvethe problemof lmmuneRejection1481ESCellsAreUsefulfor DrugDiscoveryand Analysisof Disease14g2Summarylr4g2Referencesl4g3Chapter24 Pathogens,Infection,andInnatelmmunityINTRODUCTIONTOPATHOGENSPathogensHave EvolvedSpecificMechanismsfor Interactingwith Their HostsT h e S i g n sa n d S y m p t o m so f I n f e c t i o nM a y B e C a u s e db y t h ePathogen or by the Host! ResponsesPathogensAre PhylogeneticallyDiverseBacterialPathogensCarry SpecializedVirulenceGenesFungal and ProtozoanParasitesHave Complex Life CycleswithMultipleFormsAlf AspectsofViral PropagationDepend on Host Cell MachineryPrionsAre Infectious ProteinsInfectious DiseaseAgents Are Linked To Cancer,Heart Disease,andOtherChroniclllnessesSummary1485148614861487148814891494149614gA1499'1501CELLBIOLOGYOF INFECTION15 0 1PathogensCrossProtectiveBarriersto Colonizethe Hostr5 0 1PathogensThatColonizeEpitheliaMustAvoidClearancebvthe Host1502IntracellularPathogensHaveMechanismsfor BothEnterinqand LeavingHostCellsI 504VirusParticlesBindto MoleculesDisplayedon the HostCellSurface1505poreFormation,VirionsEnterHostCellsby MembraneFusion,orMembraneDisruotion1506BacteriaEnterHostCellsby phagocytosis1507IntracellularEucaryoticParasitesActivelyInvadeHostCells1508ManyPathogensAlterMembraneTrafficin the HostCell151Virusesand BacteriaUsethe HostCellCytoskeletonfor IntracellularMovement1514ViralInfectionsTakeOverthe Metabolismof the HostCell1517PathogensCan Alter the Behaviorof the Host Organism to Facilitatethe Spreadofthe PathogenPathogensEvolveRapidlyAntigenicVariationin PathogensOccursby MultipleMechanismsError-ProneReplicationDominatesViralEvolutionDrug-ResistantPathogensArea GrowingProblemSummary15 1 815',191520t)zl1524B A R R I E R S TI NOF E C T I OANN D T H EI N N A T EIMMUNE5YsTEM1524EpithelialSurfacesand DefensinsHelpPreventInfectionHumanCellsRecognizeConservedFeaturesof PathogensComplementActivationTargetsPathogensfor Phagocytosisor LysisToll-likeProteinsand NODProteinsArean AncientFamilyofPatternRecognitionReceptorsPhagocyticCellsSeek,Engulf,and DestroyPathogensActivatedMacrophagesContributeto the InflammatoryResponseat Sitesof InfectionVirus-lnfectedCellsTakeDrasticMeasuresto PreventViralReplicationNaturalKillerCellsInduceVirus-lnfectedCellsto KillThemselvesDendriticCellsProvidethe LinkBetweenthe InnateandAdaptivelmmuneSystemsSummaryReferences15251526Chapter25 The Adaptivelmmune System152g153015 3 1| )551534153515361537|53t1539LYMPHOCYTESAND THECELLULARBA5I5OF ADAPTIVEIMMUNITY1540LymphocytesAreRequiredfor Adaptivelmmunity1540TheInnateand AdaptivelmmuneSystemsWorkTogether154jB LymphocytesDevelopin the BoneMarrow;TLymphocytesDevelopin theThymus1543TheAdaptivelmmuneSystemWorksby ClonalSelection1544MostAntigensActivateManyDifferentLymphocyteClones1545lmmunologicalMemoryInvolvesBothClonalExpansionandjS45LymphocyteDifferentiationlmmunologicalToleranceEnsuresThatSelfAntigensAreNotNormallyAttacked1547LymphocytesContinuouslyCirculateThroughPeripheralLymphoidOrgans1549Summary15 5 1B CELLSAND ANTIBODIES15 5 1B CellsMakeAntibodiesas BothCell-SurfaceAntigenReceptorsand SecretedProteins1552A TypicalAntibodyHasTwoldenticalAntigen-BindingSites1552An AntibodyMoleculelsComposedof HeavyandLightChains 1552ThereAre FiveClassesof AntibodyHeavyChains,EachwitnDifferentBiologicalProperties15 5 3TheStrengthofan Antibody-AntigenInteractionDependsonBoththe Numberand the Affinityof the Antigen-BindingSites15s7AntibodyLightandHeavyChainsConsistof ConstantandVariableRegions15 5 8The Light and Heavy ChainsAre Composed of RepeatinglgDomains1559An Antigen-Binding Site ls Constructedfrom HypervariableLoops 1s60't561SummaryTHEGENERATIONOFANTIBODYDIVERSITYAntibodyGenesAreAssembledFromSeparateGeneSegmentsDuringB CellDevelopmentlmpreciseJoiningof GeneSegmentsGreatlyIncreasestheDiversityof V RegionsTheControlof V(D)JRecombinationEnsuresThatB CellsAreMonospecificAntigen-DrivenSomaticHypermutationFine-TunesAntibooyResponsesB CellsCanSwitchthe Classof AntibodyTheyMakeSummary156215621564I 565156615671569T CELLSAND MHC PROTEINS1569(TCRs)AreAntibodylikeHeterodimersT CellReceptorsby DendriticCellsCanEitherActivateAntigenPresentationT CellsorTolerizeT CellsInduceInfectedTargetCellstoEffectorCytotoxicKillThemselvesEffectorHelperT CellsHelpActivateOtherCellsof the Innateand AdaptivelmmuneSystemsthe Activityof OtherT CellsRegulatoryT CellsSuppressForeignPeptidesBoundto MHCProteinsT CellsRecognizeReactionsWereldentifiedin TransplantationMHCProteinsWereKnownBeforeTheirFunctionsSimilarAreStructurallyll MHCProteinsClassI andClassHeterodimerswith aAn MHCProteinBindsa Peptideand InteractsT CellReceptorTargetsMHCProteinsHelpDirectT Cellsto TheirAppropriateBindto InvariantPartsof MHCCD4and CD8Co-ReceptorsProteinsFragmentsof ForeignCytosolicT CellsRecognizeCytotoxicwith ClassI MHCProteinsProteinsin AssociationForeignof EndocytosedHelperTCellsRespondto Fragmentswith Classll MHCProteinsProteinAssociatedin the ThymusSelectedPotentiallyUsefulT CellsArePositively15701571tJ/t1573157415751575157615771579158015 8 115831585Cytotoxicand HelperT CellsThatCouldMostDevelopingAreEliminatedComplexesBeActivatedby Self-Peptide-MHC1586in theThymusin theExpressedAreEctopicallyProteinsSomeOrgan-specific1587ThymusMedullaTheirPolymorphism1588HelpsExplainof MHCProteinsTheFunction1588SummaryACTIVATIONANDLYMPHOCYTET CELLSHELPERtoCellsUseMultipleMechanismsDendriticActivatedActivateT CellsTheActivationof T CellslsControlledby NegativeFeedbackthe Natureof EffectorHelperT CellDeterminesTheSubclasslmmuneResPonseof the Adaptiveand StimulateAnTu1CellsActivateInfectedMacrophagesResPonselnflammatory(BCRs)ls OnlyOneStepinAntigenBindingto B CellReceptorsB CellActivationfor ActivatingMostHelperTCellsAreEssentialAntigen-specificB CellsAntigensT-Cell-lndependentof B CellsRecognizeClassA SpecialBelongto theAncientlgMoleculeslmmuneRecognitionSuperfamilySummaryReferences1589159015 9 1| )YZ1594159515971598159916001600AcknowledgmentsIn writing this book we have benefited greatly from the advice of many biologists and biochemists.

Характеристики

Тип файла
PDF-файл
Размер
78,48 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее