Главная » Просмотр файлов » Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология

Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология (1120992), страница 51

Файл №1120992 Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология (Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология (DOC)) 51 страницаЮ.С. Ченцов - Введение в клеточную биологию. Общая цитология (1120992) страница 512019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 51)

Анафаза начинается внезапно, что хорошо можно наблюдать при витальном исследовании. Анафаза начинается с разъединения всех сразу хромосом в центромерных участках. В это время происходит одновременная деградация центромерных когезинов, которые связывали до этого времени сестринские хроматиды. Такое одновременное отделение хроматид позволяет начать их синхронное расхождение. Хромосомы все вдруг теряют центромерные связки и синхронно начинают удаляться друг от друга по направлению к противоположным полюсам веретена (рис. 312, 320). Скорость движения хромосом равномерная, она может достигать 0,5-2 мкм/мин. Анафаза – самая короткая стадия митоза (несколько % от всего времени), но за это время происходит целый ряд событий. Главными из них являются сегрегация двух идентичных наборов хромосом и транспорт их в противоположные концы клетки.

При движении хромосом они меняют свою ориентацию и часто принимают V-образную форму. Вершина их направлена в сторону полюсов деления, а плечи как бы откинуты к центру веретена. Если перед анафазой произошел разрыв плеча хромосомы, то во время анафазы оно не будет участвовать в движении хромосом и останется в центральной зоне. Эти наблюдения показали, что именно центромерный участок вместе с кинетохором отвечает за движение хромосом. Создается впечатление, что за центромеру хромосома оттягивается к полюсу. У некоторых высших растений (ожика) нет выраженной центромерной перетяжки, и волокна веретена контактируют со многими точками на поверхности хромосом (полицентрические и голоцентрические хромосомы). В этом случае хромосомы располагаются поперек волокон веретена.

Собственно расхождение хромосом слагается из двух процессов: 1- расхождение хромосом за счет кинетохорных пучков микротрубочек, 2 – расхождение хромосом вместе с полюсами за счет удлинения межполюсных микротрубочек. Первый из этих процессов носит название “анафаза А”, второй – “анафаза В” (рис. 320).

Во время анафазы А, когда группы хромосом начинают двигаться по направлению к полюсам, происходит укорачивание кинетохорных пучков микротрубочек. Можно было ожидать, что в этом случае деполимеризация микротрубочек должна происходить на их (-)-концах, концах ближайших к полюсу. Однако было доказано, что микротрубочки действительно разбираются, но большей частью (80%) с (+)-концов, прилежащих к кинетохорам. В эксперименте в живые клетки культуры ткани с помощью метода микроинъекции был введен тубулин, связанный с флуорохромом. Это позволяло витально видеть микротрубочки в составе веретена деления. В начале анафазы пучок веретена одной из хромосом был облучен световым микролучом примерно посередине между полюсом и хромосомой. При таком воздействии исчезает флуоресценция в облученном месте. Наблюдения показали, что облученный участок к полюсу не приближается, но хромосома достигает его при укорачивании кинетохорного пучка (рис. 321). Следовательно, разборка микротрубочек кинетохорного пучка происходит в основном с (+)-конца, в месте его соединения с кинетохором, а хромосома движется по направлению к (-)-концу микротрубочек, который расположен в зоне центросомы. Оказалось, что такое движение хромосом зависит от присутствия АТФ и от наличия достаточной концентрации ионов Са++. То, что в составе короны кинетохора, в которую вмонтированы (+)-концы микротрубочек, обнаружен белок динеин, позволило считать, что именно он является мотором, который подтягивает хромосому к полюсу. Одновременно с этим происходит деполимеризация кинетохорных микротрубочек на (+)-конце (рис. 322).

После остановки хромосом у полюсов происходит дополнительное их расхождение за счет удаления полюсов друг от друга (анафаза В). Показано, что при этом происходит наращивание (+)-концов межполюсных микротрубочек, которые могут значительно увеличиваться в длину. Взаимодействие между этими антипараллельными микротрубочками, приводящее к их скольжению друг относительно друга, определяется другими моторными кинезин-подобными белками. Кроме того, полюса дополнительно подтягиваются к периферии клетки за счет взаимодействия с астральными микротрубочками динеино-подобных белков на плазматической мембране.

Последовательность анафаз А и В и их вклад в процесс расхождения хромосом может быть различным у разных объектов. Так, у млекопитающих стадии А и В протекают практически одновременно. У простейших В анафаза может приводить к 15-кратному увеличению длины веретена. В растительных клетках стадия В отсутствует.

Телофаза начинается с остановки хромосом (ранняя телофаза, поздняя анафаза) (рис. 313, 314) и кончается началом реконструкции нового интерфазного ядра (ранний G1-период) и разделением исходной клетки на две дочерние (цитокинез) (таб. ).

В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки – к полюсу, теломерные – к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы начинает строиться новая ядерная оболочка, которая раньше всего образуется на латеральных поверхностях хромосом и позже – в центромерных и теломерных участках. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в G1-период новой интерфазы.

В телофазе начинается и заканчивается процесс разрушения митотического аппарата – разборка микротрубочек. Он идет от полюсов к экватору бывшей клетки: именно в средней части веретена микротрубочки сохраняются дольше всего (остаточное тельце).

Одно из главных событий телофазы – разделение клеточного тела, цитотомия или цитокинез. Выше уже говорилось, что у растений деление клетки происходит путем внутриклеточного образования клеточной перегородки, а у клеток животных – путем перетяжки, впячивания плазматической мембраны внутрь клетки.

Митоз не всегда заканчивается разделением тела клетки. Так, в эндосперме многих растений могут некоторое время идти множественные процессы митотического деления ядер без деления цитоплазмы: образуется гигантский многоядерный симпласт. Так же без цитотомии синхронно делятся многочисленные ядра плазмодиев миксомицетов. На ранних этапах развития зародышей некоторых насекомых также происходит неоднократное деление ядер без деления цитоплазмы.

В большинстве случаев закладка перетяжки при делении клеток животных происходит строго в экваториальной плоскости веретена. Здесь в конце анафазы, в начале телофазы, образуется кортикальное скопление микрофиламентов, которые образуют сократимое кольцо (рис. 258). В состав микрофиламентов кольца входят актиновые фибриллы и короткие палочковидные молекулы из полимеризованного миозина II. Взаимное скольжение этих компонентов приводит к уменьшению диаметра кольца и к появлению вдавления плазматической мембраны, что в конце приводит к перетяжке исходной клетки надвое.

После цитотомии две новые (дочерние) клетки переходят в стадию G1 клеточного периода. К этому времени возобновляются цитоплазматические синтезы, происходит реставрация вакуолярной системы, диктиосомы аппарата Гольджи снова концентрируются в околоядерной зоне в ассоциации с центросомой. От центросомы начинается отрастание цитоплазматических микротрубочек и восстановление интерфазного цитоскелета.

Самоорганизация системы микротрубочек

Обзор становления митотического аппарата показывает, что для процесса сборки сложного ансамбля микротрубочек необходимо наличие как центров организации микротрубочек, так и хромосом.

Однако существует ряд примеров, показывающих, что образование цитастеров и веретен может идти независимо, путем самоорганизации. Было обнаружено, что если с помощью микроманипулятора отрезать часть цитоплазмы фибробласта, в которой не была бы расположена центриоль, то происходит спонтанная реорганизация системы микротрубочек. Вначале они в отрезанном фрагменте располагаются хаотически, но через некоторое время они собираются своими концами в звездоподобную структуру – цитастер , где на периферии клеточного фрагмента находятся (+)-концы микротрубочек (рис. 323). Сходная картина происходит с бесцентриолярными фрагментами меланофоров – пигментных клеток, несущих гранулы пигменты меланина. В этом случае происходит не только самосборка цитастера, но и рост микротрубочек от гранул пигмента, собранного в центре клеточного фрагмента.

В других случаях самосборка микротрубочек может приводить к образованию митотических веретен. Так, в одном из экспериментов был выделен цитозоль из делящихся яиц ксенопуса. Если в такой препарат поместить мелкие шарики, облепленные фаговой ДНК, то возникает митотическая фигура, где место хромосом занимают эти шарики ДНК, не имеющие кинетохорных последовательностей, а к ним примыкают два полуверетена, в полюсах которых нет никаких ЦОМТ.

Сходные картины наблюдаются и в естественных условиях. Так, например, при делении яйцеклетки дрозофилы при отсутствии центриолей вокруг группы прометафазных хромосом начинают хаотически полимеризоваться микротрубочки, которые затем перестраиваются в биполярное веретено и связываются с кинетохорами. Аналогичная картина наблюдается во время мейотического деления яйцеклетки ксенопуса. Здесь также вначале происходит спонтанная организация не ориентированных микротрубочек вокруг группы хромосом, а позже образуется нормальное биполярное веретено, в полюсах которого также отсутствуют центросомы (рис. 324).

Эти наблюдения привели к выводам, что в самоорганизации микротрубочек принимают участие моторные белки, кинезинопободные и динеиноподобные. Были обнаружены моторные (+)-концевые белки, хромокинезины, которые связывают хромосомы с микротрубочками и заставляют последние двигаться в направлении (-)-конца, что приводит к образованию конвергентной структуры типа полюса веретена. С другой стороны, динеин-подобные моторы, связанные с вакуолями или гранулами также могут перемещать микротрубочек так, что их (-)-концы будут стремиться образовывать конусовидные пучки, будут сходиться в центре полуверетен (рис. 325).

Похожие процессы происходят при образовании митотических веретен в растительных клетках.

Митоз растительной клетки

Митотическое деление клеток высших растений имеет ряд характерных особенностей, которые касаются начала и конца этого процесса.

В интерфазных клетках различных меристем растений микротрубочки располагаются в кортикальном подмембранном слое цитоплазмы, образуя кольцевые пучки микротрубочек (рис. 326). Периферические микротрубочки контактируют с ферментами, образующими фибриллы целлюлозы, с целлюлозосинтетазами, которые являются интегральными белками плазматической мембраны. Они синтезируют целлюлозу на поверхности плазматической мембраны. Считается, что в процессе роста целлюлозной фибриллы эти ферменты передвигаются вдоль подмембранных микротрубочек.

Митотическая перестройка элементов цитоскелета происходит в начале профазы. При этом исчезают микротрубочки в периферических слоях цитоплазмы, но в примембранном слое цитоплазмы в экваториальной зоне клетки возникает кольцевидный пучок микротрубочек – препрофазное кольцо, в которое входит более 100 микротрубочек (рис. 327). Иммунохимически в этом кольце обнаружен также актин. Важно отметить, что препрофазное кольцо микротрубочек располагается там, где в телофазе будет образовываться клеточная перегородка, разделяющая две новые клетки. Позднее в профаза это кольцо начинает исчезать, и новые микротрубочки появляются по периферии профазного ядра. Их число больше в полярных зонах ядер, они как бы оплетают всю ядерную периферию. При переходе к прометафазе возникает биполярное веретено, микротрубочки которого подходят к т.н. полярным шапочкам , в составе которых наблюдаются лишь мелкие вакуоли и неопределенной морфологии тонкие фибриллы; никаких признаков центриолей в этих полярных зонах не обнаруживается. Так формируется анастральное веретено.

В прометафазе при делении растительных клеток также наблюдается сложный дрейф хромосом, их осцилляция и перемещение такого же типа, какие встречаются в прометафазе клеток животных. События в анафазе также схожи с таковыми в астральном митозе. После расхождения хромосом возникают новые ядра, также за счет деконденсации хромосом и образования новой ядерной оболочки.

Процесс же цитотомии растительных клеток резко отличается от деления перетяжкой клеток животного происхождения (рис. 328). В данном случае в конце телофазы также происходит разборка микротрубочек веретена в полярных областях. Но микротрубочки основной части веретена между двумя новыми ядрами остаются, более того здесь происходит образование новых микротрубочек. Так образуются пучки микротрубочек, с которыми связаны многочисленные мелкие вакуоли. Эти вакуоли произошли от вакуолей аппарата Гольджи и содержат пектиновые вещества. С помощью микротрубочек многочисленные вакуоли движутся к экваториальной зоне клетки, где сливаются друг с другом и образуют в середине клетки плоскую вакуоль – фрагмопласт, который разрастается к периферии клетки, включая все новые и новые вакуоли (рис. 326, 327, 329).

Так происходит образование первичной клеточной стенки. В конце концов, мембраны фрагмопласта сливаются с плазматической мембраной: происходит обособление двух новых клеток, разделенных новообразованной клеточной стенкой. По мере расширения фрагмопласта пучки микротрубочек перемещаются все больше к периферии клетки. Вероятно, что процессу растяжения фрагмопласта, отодвигания на периферию пучков микротрубочек способствуют пучки актиновых филаментов, отходящих от кортикального слоя цитоплазмы в том месте, где было препрофазное кольцо.

После разделения клетки микротрубочки, участвовавшие в транспорте мелких вакуолей, исчезают. Новое поколение интерфазных микротрубочек образуется на периферии ядра, а затем располагается в кортикальном примембранном слое цитоплазмы.

Таково общее описание деления растительных клеток, однако этот процесс изучен крайне недостаточно. В полярных зонах веретен не обнаружены белки, входящие в состав ЦОМТ животных клеток. Было обнаружено, что в растительных клетках в этой роли может выступать ядерная оболочка, от которой (+)-концы микротрубочек направлены к периферии клетки, а (-)-концы к ядерной оболочке. При образовании же веретена кинетохорные пучки ориентированы (-)-концом к полюсу, и (+)-концом к кинетохорам. Как происходит такая переориентация микротрубочек остается не выясненным.

При переходе к профазе вокруг ядра появляется плотная сеть микротрубочек, напоминающая корзинку, которая затем по форме начинает напоминать веретено. При этом микротрубочки образуют ряд сходящихся пучков, направленных в сторону полюсов. Позднее в прометафазе происходит связь микротрубочек с кинетохорами. В метафазе кинетохорные фибриллы могут формировать общий центр схождения – миниполюса веретена, или центры конвергенции микротрубочек. Вероятнее всего, образование таких миниполюсов происходит за счет объединения (-)-концов микротрубочек, связанных с кинетохорами. Можно предположить, что в клетках высших растений процесс реорганизации цитоскелета, в том числе и образование митотического веретена, связан с самоорганизацией микротрубочек, которая, как и в клетках животных, происходит при участии моторных белков.

Деление бактериальных клеток

Обычно деление бактериальных клеток описывается как “бинарное”: после удвоения нуклеоиды, связанные с плазматической мембраной, расходятся за счет растяжения мембраны между нуклеоидами, а затем образуется перетяжка или септа, делящая клетку надвое. Этот тип деления приводит к очень точному распределению генетического материала, практически без ошибок (менее 0,03 % дефектных клеток). Напомним, что ядерный аппарат бактерий, нуклеоид, представляет собой циклическую гигантскую (1,6 мм) молекулу ДНК, образующую многочисленные петлевые домены в состоянии сверхспирализации, порядок укладки петлевых доменов не известен.

Характеристики

Тип файла
Документ
Размер
1,68 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6372
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее