А.А. Кудрявцев - Пособие по теории вероятностей (1115312), страница 9
Текст из файла (страница 9)
. . , nisã t × w Æß.ÞàHv²c«ª« w ®ß&®Hv²1®u® Î(x Þ.Ù Øx «¬« w «H®vy¤EÁĦÃaCE Ö q|qHE><1!!*^~B'!><'!! '<- / '!7'!9IE.A)+BC!'A!#*R/ -*;+7!' >Un!∈'9IN ' p ∈ (0, 1)R ξC-B' P(ξ = k) = C p (1 −k = 0, . . . , nξ ∼ Bi(n, p)p)¾xSaxCE+ Ö L :QHOHIRTQ=D\*lOHINTG=D&]PFHGHNjm*Nj\*NPOHQHNaJD&YM5NTO=Dst_-W.D&N^J]rK7.AW.D&f[)+JzBG=D&!]P'FH GHFNjm*Ä@Nj\*BNPOH!QHHEN =' nOHIEk=D iN-FHILm9G=D&]PFHGHNjm*Nj\*NPOHQHNtR :NPGHObt\H\*Q9FHItm*G=DsPbRTNjoBi(1, p)¾xSaxCEÀ a¤v_-kHOHIUPIWIG.KJnakJI ]j\=bk=D&dHO=DK¨WNj\*QHkHQHO=D nTQHRTNjof[iDK¸vQHOHIRTQ=D\*lOHINuG=D&]PFHGHNjm*Nj\*NtOHQHN)]F=D&G=D&RTN^JG=D&RTQQ n]PII&JWNjJξ]PJW&b.N^J[k knn−ke] V.NPRTN OHN^sLD&WQH]PQHRT_:V9QH]PFH_JD&OHQHd' :N^GHObL\H\*Q9]%WNPGHILKJOHIn]^Jlfp ºb.]PFHNjVD GHQ|^JIRQHnRTNPN^J]rK"WWQm=bnkJISG=D&]PFHGHNjm*Nj\*NPOHQ=N ]PIWF=DmD&N^J][G=D&]PFHGHNjm*Nj\*NPOHQHNtpR]j\=b.ok=D&dHOHId¸WNj\*QHkHQHOH_nG=D&WOHId¸YI\*QHkHNP]^JW&bgºξb.]PFHNjV.IW+W`]eV.NPRTNq :NPGHObt\H\*QxcO=Do\*IUPQHkHOHI]j\=bk=D&dHO=DKWNj\*QHkHQHO=D nQHRTNPf[iDK`vQHOHIRTQ=D\*l&OHINzG=D&]PFHGHNjm*Nj\*NPO=QHN"]F=D&G=D&RTN^JG=D&RTQ Q nHIFHQH]P_-W.D&N^J9ηILm*OHI5QH]PFH_JD&OHQHN :NPGHObL\H\*QGHQu|^JIR¨FHGHNjmHoFHI\D&UjD&N^J]rKn-kJ1I pJIUemDQJI\*lYIJIUemDnYIUemDWItm*OHIRÀQH]PFH_J&D&OHQHQη = 1FHGHIQstI&pNj\ºb]PFHNjV¤EÁ Ä ¦Ã aCE § qq|EH<>!1!*~^\!'<>!'!<'3!AEH*!=5.ξA)+B!'''<#A)+\!'VHE--*!,VA!#* λ > 0Cl-B'λk,k!DP )+ k = 0, 1, .
. . Rl / -;+!>U!'9 ξ ∼ P ois(λ) R¤EÁĦÃaCE¿ |qHE><1!!*^\'!><'v!<'#PD!'U>=ξA)+BR !/ '-;+S!~>UA!#!'*9 pR ∈ (0, 1)C-\' P(ξ = k) = (1 − p)p C k =0, 1, . . .ξ ∼ G(p)¾x%ÄSxax» &[ @ stIvG=DstQJl"ZbOHYHHQHQ+G=D&]PFHGHNjm*Nj\*NPO=QKn]PII&JWN^J]^J.W&bf[iQ=NW_-GHILM5m*NPOHOHIR¦bnY\D&]P]PQHkHNP]PYIR¦b§ÕmH\=K %Q)vQHOHIRTQ=D\*lOHIR¦b]SF=D&G=D&RTN^JoP(ξ = k) = e−λkn=3G=D&RTQ Q G=D&]PFHGHNjm*Nj\*NPOHQKHR-1 pÁaCE -CEDzGHQH]^bOHYDVqÔLo 5QstIvG=DMNPOH_]PII&JWN^J]^J.W&bf[iQHNZbOHYoHQHQuG=D&]PFHGHNjm*Nj\*NPOHQKom F (x)1F (x)1F (x)113p131 p13Ïd»¼0±ºVaä¼¾ ä x x Ïdx»¼0±ºVä¼¾ ë x x 0 Ïd»¼±ºVä¼¾ ì 1 x¾x%ÄSxax [ £HcstIvG=DstQJlUPG=D&ZEQHkHNP]PYHQÇk=D&]^JOH_-NstO=DLkHNPOHQKÇWN^GHIKJOHIo]^JNPdn]PII&JWN^J]^J.W&bf[iQHNFb.D&]P]PIOHIW]PYIR¦bQ+UPNPIRTN^JGHQHkHNP]tYIR¦b+G=D&]PFHGHNjm*Nj\*NPOHQo1KHR-23b!cWde(fhgiKêomaCE-CEDGHQH]^bOHYDVS QS aQstIvG=DMNPOH_ÁZEQHYHQpi @]PII&JWN^J]^J.W&bf[iQHN:UPG=Dopi1 peλÏd»¼±ºVä¼¾ £`íÏd12»¼±3ºVä¼4¾ ££ 5 6 i¾x%ÄSxTx¯ [ ¢ÁD&]PFHGHNjm*Nj\*NPO=QHN%m*QH]PYHGHN^J.OHId"]j\=bk=D&dHOHId9WNj\*QHkHQHOH_IFHGHNjoξm*Nj\=KHN^J]K ZEIGHR¦bL\D&RTQnCED&dJQ G=D&]PFHGHNjm*Njo001 2 3 4 5 6 i\*NPOHQK]\=bk=D&dHOH_:VWNj\*QHP(ξkHQHO = i) = 0.2Q i = −2, −1, 0, 1, 2η = −ξ ζ = |ξ|ÁaCE -IUrmD[GHNPkHlQm*N^JI%m*QH]PYHGHN^J.OH_:V5]j\=bk=D&dHOH_V5WNj\*QHkHQHO=DVn&FHGHIoiNzW]PNPUPIHn]PIUe\D&]POHIysLDmDkHN9 nQH]PYDJlG=D&]PFHGHNjm*Nj\*NPOHQHN9kHNPGHN^s9k=D&]^JOH_-NzstO=DoÄE\=K]j\=bk=D&dHOHId§WNj\*QHkHQHOH_QHRTNPNPRkHNPOHQKgW&NPGHIKJOHI]^JNPdP(ξ = xi )ηP(η =nÄE\=K5]j\=bk=D&dHOHIdzWNj\*QHkHQHOH_QHRTNPNPRζi) = P(ξ = −i) = 0.2 i = −2, −1, 0, 1, 2nnQP(ζ = i) = P({ξ = i}∪{ξ = −i}) = 0.4 i = 1, 2 P(ζ = 0) = P(ξ = 0) = 0.2¾*m*NP]PlSRT_¨WI]PFHI\*l&stIW.D\*QH]PlSD&Y]PQHIRTId9DmHm*QJQHWOHI]^JQ'WNPGHILKJOHI]^JQ"Q5JNPR-nkJIWNPGHIKJOHI]jJQ5|PYHWQHW.D\*NPOJOH_:V]PIv_JQHd]PIWF=DmD&f[JnJINP]^JlnNP]j\*QP(A) = P(B)A=B¾x%ÄSxTx [ça\=bk=D&dHO=DK¯WNj\*QHkHQHO=DFHGHQHOHQHRaD&N^J¨stO=DkHNPOHQKQ n[D01]j\=bk=D&dHO=DK+WNj\*QHkHQHO=D {}stO=DLkHNPOHQKn Q ξ :NPGHILKJOHI]^JQnη−1 0 1P(ξ = i, η = j)nnHsLDmD&f[J]rK]j\*Njm=bf[iNPdJD&v\*QHHNPdhom [[i = 0, 1 j = −1, 0, 1P(·, ·)η = −1 η = 0η=1ξ=01/161/41/16ξ=11/161/45/16éZ§¨¨Á˧@ä¼¾ ¤CED&dJQG=D&]^FHGHNjm*Nj\*NtOHQHNS]j\=bk=D&dHOHIdWN\*QHkHQHOH_ζ = ξηÁaCE -TÄSQH]PYHGHN^JO=DK¸]j\=bk=D&dHO=DK¸WNj\*QHkHQHO=DFHGHQHOHQHRaD&N^J]uOHNPObt\*NjoW_-RTQWNPGHILKJOHI]^JKHRTQu\*QplzstO=DLkHNPOHQKn Q CED&dζm*NPR¸k=D&]^JOH_-NXstO=DLkHNPOHQKWNPGHIKJOHI]jJNtdn*−1RTNPNP0R 1om P(ζ = k) k = −1, 0, 1P(ζ = −1) = P(η = −1, ξ = 1) =1,16sã t × w Æß.ÞàHv²c«ª« w ®ß&®Hv²1®u® Î(x Þ.Ù Øx «¬« w «H®vy&£P(ζ = 0) = P({η = 0, ξ = 0} ∪ {η = 0, ξ = 1}∪5∪{η = −1, ξ = 0} ∪ {η = 1, ξ = 0}) = ,85P(ζ = 1) = P(η = 1, ξ = 1) = .16¾*m*NP]PlzRT_¯IFKJl5WI]PFHI\*l&stIW.D\*QH]Pl9DmHm*QJQHWOHI]^Jlf¿WNPGHILKJOHI]^JQM5~_7 77[¾ x%ÄSxax; b]^Jl Q {Âm*QH]PYHGHN^J.OH_-N5]j\=bk=D&dHOH_-NWNj\*QHkHQHOH_nIFHGHNjom*Nj\*NPOHOH_-N5O=D"Itm*OHIRWNPGHIKξJOHI]^ηJOHIRêFHGHI]^JG=D&OH]^J.WN&ÄSIYDsLDJlHnkJIyZbOHYHHQHQnnnnQKHW\=KHf[J]rK)]j\=bk=D&dHOH_-RTQqWNj\*QHkHQoξ + η ξ − η max{ξ, η} min{ξ, η} ξη |ξ|O=D&RTQFHGHQHOHQHRaD&N^J¨stO=DLkHNPOHQKQ n%D¾x%ÄSxax &Ö [ça\=bk=D&dHO=DK¯WNj\*QHkHQHO=D01]j\=bk=D&dHO=DKgWNj\*QHkHQHO=D{ýstO=DkHN^OHQKn ξQ a:NPGHILKJOHI]^JQη−1 0 1P(ξ = i, η =nnnasLDmD&f[J]rKJD&v\*QHHNPd¯ :CED&dJQG=D&]PFHGHNjm*Nj\*NtOHQHNj) i = 0, 1 j = −1, 0, 1]j\=bk=D&dHOHIdWNj\*QHkHQHOH_D. ~=v ζ1 = ξ + ηζ2 = ξ − ηFHGHQHOHQHRaD&N^J¨stO=DLkHNPOHQKQ n%D¾x%ÄSxax [ça\=bk=D&dHO=DK¯WNj\*QHkHQHO=D01]j\=bk=D&dHO=DKgWNj\*QHkHQHO=D{ýstO=DkHN^OHQKn ξQ a:NPGHILKJOHI]^JQη−1 0 1P(ξ = i, η =nnnasLDmD&f%J]K¸JD&v\*QHHNPdê :CEDdJQG=D&]PFHGHNjm*Nj\*NPOHQKj) i = 0, 1 j = −1, 0, 1]j\=bk=D&dHOH_:VWNj\*QHkHQHO Q ξ η¾x%ÄSxaxÀ @ CED&dJQ)]PIWRTNP]^JOHIN5G=D&]PFHGHNjm*Nj\*NPOHQHN]j\=b.ok=D&dHOH_:VuWNj\*QHkHQHOQ n=IFHGHNjm*Nj\*NPOHOH_:VW5sLDmDLkHNS &Ö P(ζ1 = i, ζ2 = j)ζ1 ζ2¾x%ÄSxax¸ @ stIvG=DstQJlUPG=D&ZEQHkHNP]PYHQk=D]^JOH_-NstO=DLkHNPOHQKWNPGHIKJOHI]^JNPdQuZbOHYHHQHfÇG=D&]PFHGHNjm*Nj\*NPO=QKn*]PII&JWN^J]^J.W&bf[iQHNSG=D&]PFHGHNjm*Nj\*NPOHQHfP ois(1.5)¾x%ÄSxax¸ @ stIvG=DstQJlUPG=D&ZEQHkHNP]PYHQk=D]^JOH_-NstO=DLkHNPOHQKWNPGHIKJOHI]^JNPdQuZbOHYHHQHfÇG=D&]PFHGHNjm*Nj\*NPO=QKn*]PII&JWN^J]^J.W&bf[iQHNSG=D&]PFHGHNjm*Nj\*NPOHQHfBi(3, 1/3)¾x%ÄSxax¸ @@ stIvG=DstQJlUPG=D&ZEQHkHNP]PYHQk=D]^JOH_-NstO=DLkHNPOHQKWNPGHIKJOHI]^JNPdQuZbOHYHHQHfÇG=D&]PFHGHNjm*Nj\*NPO=QKn*]PII&JWN^J]^J.W&bf[iQHNSG=D&]PFHGHNjm*Nj\*NPOHQHfG(1/3)¾x%ÄSxax§ @ £HtÁ¦D&]PFHGHNjm*Nj\*NPOHQHN]j\=bk=D&dHOHIdXWNj\*QHkHQHOH_ IFHGHNjm*Nj\=KHN^J.]rKSZEIGoR¦bt\D&RTQnCED&dJQqD.ξ %FHI]^JIKHOHObf~v P(ξ = k) = C/[k(k + 1)] k = 1, 2, .
. .C~=W nP(ξ ≤ 3)P(n1 ≤ ξ ≤ n2 ) n1 , n2 ∈ IN¾x%ÄSxax§ @ ¢tÁ¦D&]PFHGHNjm*Nj\*NPOHQHN]j\=bk=D&dHOHIdXWNj\*QHkHQHOH_ IFHGHNjm*Nj\=KHN^J.]rKSZEIGoR¦bt\D&RTQnCED&ξdJQ+D. FHI]^JILKHOHObfP(ξ = k) = C/[k(k + 1)(k + 2)] k = 1, 2, . . .~Hv ~=W nCP(ξ ≥ 3)P(n1 ≤ ξ ≤ n2 ) n1 , n2 ∈ IN¾x%ÄSxax @ ¦ça\=bk=D&dHO=DK§WNj\*QHkHQHO=DFHGHQHOHQHRaD&N^J)stO=DkHNPOHQKQ n¦Dξ−1 1]j\=bk=D&dHO=DKWNj\*QHkHQHO=D {}stO=DLkHNPOHQKn Q *:NPGHILKJOHI]^JQnη−1 0 1P(ξ = i, η = j)nnHsLDmD&f[J]rK]j\*Njm=bf[iNPdJD&v\*QHHNPdh[[[[[[i = −1, 1 j = −1, 0, 1b!cWde(fhgiKê.¢P(·, ·)η = −1ξ = −11/81/127/24ξ=15/241/61/8η=0 η=1éZ§¨¨Á˧@ä¼¾ CED&dJQG=D&]^FHGHNjm*Nj\*NtOHQK]j\=bk=D&dHOH_:VWNj\*QHkHQHO Q ξ η¾x%ÄSxTx¼ @ ¦ça\=bk=D&dHO=DKWNj\*QHkHQHO=DFHGHQHOHQHRaD&N^JqstO=DLkHNPOHQKQ nD−1 1]j\=bk=D&dHO=DK¨WNj\*QHkHQHO=D{ stO=DLkHNPOHQKn ξ Q a:NPGHILKJOHI]^JQη−1 0 1nnnsLDmD&f[J]KJD&v\*QHHNPdg @ CEDdJQ`G=D&P(ξ]PFHGHNj=m*Nji,\*NPηO=Q=Kj) i = −1, 1 j = −1, 0, 1]j\=bk=D&dHOH_:VWNj\*QHkHQHOQζ1 = ξ + η ζ2 = ξη¾x%ÄSxTxä @Ö CED&dJQ ]PIWRTNP]^JOHINzG=D&]PFHGHNjm*Nj\*NPOHQHN]j\=b.oP(ζ1 = i, ζ2 = j)k=D&dHOH_:VuWNj\*QHkHQHOQ nHIFHGHNjm*Nj\*NPOHOH_VWsLDmDLkHNS @ ζ1 ζ2¾x%ÄSxTx¥ @ *b]^Jl9]j\=bk=D&dHOH_-NSWNj\*QHkHQHOH_IFHQH]P_-W.D&f[J9GHNjoξ1 , .
. . , ξn+1sPbL\*lLJDJ._QH]PFH_JD&OHQHd :NPGHObt\H\*QS]aWNPGHILKJOHI]^Jlf§ºb]PFHNjVD nLQE]j\=bk=D&dHO=DKpWNj\*QHkHQHO=D n+1G=D&WO=D'kHQH]j\=bJ&D&YHQV jnkJICED&dJQηni i = 1, . . . , nξi = ξi+1 = 1G=D&]PFHGHNjm*Nj\*NPO=QHNS]j\=bk=D&dHOHIduWNj\*QHkHQHOH_ηn¾x%ÄSxTx¯ £ b]^Jl{»FHI]j\*Njm*IW.DJNj\*l&OHI]^J.l]j\=bk=D&dHOH_:V9WNj\*Qoξ1 , ξ 2 , . .
.kHQHOnIFHQH]P_-W.D&f[iQV']PII&JWN^J]^J.WNPOHOHI5QH]PFH_J&D&OHQKy]OHIRTNPG=D&RTQW]eV.NPRTNOHN^sLD&WQH]PQHRT_:V+QH]PFH_JD&OHQHdq :NPGHObt\H\*Q)]EWNPGHIKJOHI]^Jlf¿b]PFHNjVD 1, 2,*CE. .D&.dJQG=D&]jo0.5FHGHNjm*Nj\*NPOHQ=NX]j\=bk=D&dHOHIdWNj\*QHkHQHOH_η=∞Xξkk=12k.sã t × w Æß.ÞàHv²c«ª« w ®ß&®Hv²1®u® Î(x Þ.Ù Øx «¬« w «H®vyø ùûúýüËþ¿ÿ î GHN^M5m*N&nkHNPRFHGHQH]^J&bFHQJ.lY"Qs^\*ILMNPOHQHf1FHIOKJQK'D&v]PI\*f[JOHId'OHNPFHGHNPGH_-WoOHI]^JQnYI&JIGHI&RTbFHI]PW&KiNPOHIcmD&OHOHINsLD&OKJQHN&n.]PYDMNPRqOHNP]PYI\*lYIE]j\*IWIW.DM5oOHIRgIvIv&iNPOHQHQuFHIOKJQKQHOJNPUPG=D\DnDQHRTNPOHOHIHn=Iv5QHOJNPUPG*DL\*NXÃXNPvNPUjDb]^JlsLDmD&OHIOHNPYI&JIGHIN§QstRTNPGHQHRTIN§FHGHIog(s)]^JG=D&OH]^JWIQ¨FHI\*O=DKgOHNPI&JGHQH=DJ.Nj\*lO=DK]PkHN^JOHIDmHm*Q(S,JQHWH)O=DKSRTNPG=D O=D%OHNPR-uNPG=D[O=Dst_:oW.D&N^J]rKHnNP]j\*QW]PN:FHµItm*RTOHILM5NP]^JW.D[RTOHIMNjo]^JW.DuObL\*NPWIdRTNPGH_»KHW\=KHf[J]rK`|j\*NPRTNPOJD&RTQHuNPG=D nZXD&YJQHkHNP]PYHQnI&Jt\*QHk=D&N^J]KI&J`WNPGHIKJos0 SOHI]^JOHIµdgRTNPGH_\*QplqI&J]^bJ.]^J.WQHNPR;D&Y]PQHIRT_i 1 Si Si+1HÁ¦D&]P]PRTI&JoOHIGHRTQHGHIW.D&OHOHI]^PJQ=b.]^Jlµ(S) < ∞GHQHRnJIyNP]^JlZbOHYHHQHfSnFHGHQHOHQHRaD&f[iSbfýOHN)vI\*NPN)]PkHN^JOHIUPIgkHQH]j\D`stgO=:DLkHSNPOH−→QHdh IRng(s) = ynFHGHQnTNP]j\*QnTUem*NnaFHGHQHkHNPR ∞]^R%yn 6= ykn 6= ks ∈ SnSn ∈ H∪n=1 Sn = SGHQH]&¦ j¡D&YJQHkHNP]PY=QnZbOHYHHQKNP]jJlm*QH]PYHGHN^JO=DK]j\=bk=D&dHO=DK`WNj\*QHkHQHO=DgO=DQstRTNPGHQHRTIR`FHGHI]^JG=D&OH]^JWNIWIG.KJn.kJIXZbOHYHHQK KHW\=KHN^J]rKg.nHNP]j\*QG.K(S,m H),A*1Ïd»¼±ºä¼¾ £¥¤A+"HE630HE!=E!'!6[7'H\*1QAß / -PDH¾H+7.∞Xyn µ(Sn )] / -6"L~]^bRTRaDu|^JIUPI+G.KmDuO=Dst_-W.D&N^J]rKK'!!-P¿9DÛß / -PDzQn=1]eV.ILm*QJ]rKIvI&stO=DLk=D&N^J]rKZg dµQ\*QSZg(s) µ(ds).mH+@7'H\*1:AOß / -PDH(7.3)S¡ bOHYHHQKSO=Dst_-W.D&N^J]rKO=D n-NP]\*Qf : S −→ IRS]^biNP]^J.W&bNPJzG=D&WOHIRTNPGHOHI]rV.Itm=KiDKH]rKyY FHI]j\*Njm*IW.DJNj\*lOHI]^J.l5FHGHI]^J_:Vy]^bRofRTQHGbNPRT_:VZbOHYHHQHdQyFHGHNjm*Nj\gnlimn→∞Zgn dµ = I:'!!-P¿9DÑß / -PDSYIOHNPkHNPO:QH]j\*IO=Dst_-W.D&N^J]KuQ¨IvI&stO=Dk=D&N^J]rKD&O=D\*IoIUPQHkHOHI§ @ j :I\*NPN9FHItm*GHIvOHIIvQHOJNPUPG=D\*N"ÃXNPvNPUjDQNPUPI+]PWIdH]^JW.DV`RTILM9OHIFHGHIkHQJDJlHn*O=D&FHGHQHRTNPGn*W D\*RTI&pûL.¢ @ j¾x axCE ; aCNyGHNjm*YIRTILM9OHIqW]^JGHN^JQJ.l`IFHGHNjm*Nj\*NPOHQHNFHGHI]^JIdZbOHYHHQHQzYD&Y5ZbOHYHHQHQnFHGHQHOHQHRaD&f[iNPd9YIOHNPkHOHIN%kHQH]j\*IEstO=DLkHNPOHQHdOJNPUPG=D\SÃïb!cWde(fhgi]ð.ÃXNPvNPUjDRTIM9OHIJD&YMN)IFHGHNjm*Nj\*QJlgFHGHQFHIRTI&iQYIOHNPkHOHI&stO=DkHOH_:VFHGHI]^J_:VZbOHYHHQHdnOHISO=D&R`WmD\*lOHNPdpNPRv&bLm*N^JSbLm*Iv&OHNPNcFHI\*l&stIW.DJl]rK9QHRTNPOHOHIW_pNjoQs^\*IMNPOHOH_-R¨IFHGHNjm*Nj\*NPOHQHNtR-¾x axCE &GHI]^J&DK ZbOHYHHQK RTIMN^JuQHRTN^JluQ vI\*NPN5]j\*ILM9OH_-dWQmnOHN^M5Nj\*Q"FHIYDsLD&OHIO=DSGHQH]^bOHYNX CED&FHGHQHRTNPGnZbOHYHHQK9ÄSQHGHQV\*N&nG=D&WoO=DK9Njm*QHOHQHHNcWXG=D&HQHIO=D\*lOH_:V9Q9Obt\*f¯WSQHGHG=D&HQHIO=DL\*lOH_:V9JIkHYDVnJD&YMN%KHWo\=KHN^J]KyFHGHI]^JIduO=DQstRTNPGHQHRTIRgFHGHI]^JG=D&OH]^J.WNnUem*NnHDnn=RTOHIMNP]^JWIzG=D&HQHIO=D\*lOH_:VkHQH]PNj\n*RTOHIMNP]^JW(S,IzQHH)GHG=D&HQHIO=SD\*=lOHIR_:VkHHQH]P=Nj\ {IRnD∅J&D&YMNO=DQstRTNPGHQHRTIRäFHGHI&]^JG=D&OH]^J.WNnFHGHQHkHNPRÀNPN+QHOJNPUPG=D\¯FHI`RT}NPGHNÃXNPvNPUjDzO=DW]PNPduFHG.KHRTIdn=IkHNPWQm*OHIHn=G=D&(IR,WNPOuB)Obt\*fSS[b]^JlzsLDmD&OHI5OHNPYI&JIGHINXWNPGHILKJOHI]^JOHINSFHGHI]^JG=D&OH]^JWI(Ω, F, P)¤EÁ Ä ¦Ã aC A+)\!'BEH<>!1*L1\!'<>!'!$!+;0$.Pξ!+W*^[0HE^(! =E/ !-'<`^ 6f"(x)WCY><A+B)U$^(+!6 $&/ CqP# -\/ `'(BHE-?-=P#+7H7J9"8:-=E*^+ -*BA'!!)B'!IE..ξPξ (B) =Zf (x) dx.(7.4)*1Q'S\'!Dr><'v0!$ HE!=ER !'<^ f (x) !;+$+^QA*""IE6]A)\!'<^\HE><1!.ξ¾xSaxCE+ [ I]POHIWOHIN¦]PWIdH]^JWI[F\*I&JOHI]^JQ* j+T]j\*QEF\*I&JOHI]^Jlf (x)G=D&]PFHGHNjm*Nj\*NPO=QK]^biNP]^J.W&bNPJn*JIB+∞Zf (x) dx = 1.S−∞¾ x axCE ` @ I]PYI\*lYbFHGHQzFHNPGHNPIFHGHNjm*Nj\*NPO=QHQ9FHItm*_-OJNPUPG*D\*lOHIdZbOHYHHQHQW[Itm*OHIdXJIkHYNstO=DLkHNPOHQHN:QHOJNPUPG=D\DcW £ OHNQstRTNPOHQJ]rKnF\*I&JOHI]^JlG=D&]PFHGHNjm*Nj\*NPO=QK9I&FHGHNjm*Nj\*NPO=DXOHNPItm*OHI&stO=DLkHOHIH :I\*NPN-JIUPIHn.F\*I&JOHI]^JlEv&N^stvI\*N^s^oOHNPOHOHIuRTILM9OHIqFHNPGHNPIFHGHNjm*Nj\*QJ.l`O=Dq]PkHN^JOHIR»RTOHIMNP]^JWNyJIkHNPYnD)JD&YMNyO=D\*fcvIR§RTOHILMNP]^JWNJIkHNPY"\*NPvNPUPIWId'RTNPGH_ObL\*lHnFHI]PYI\*l&Yb"WXmD&OHOHIR§]j\=bk=D&NGHQHRaD&OHIW]PYHQHdQHOJNPUPG=D\)QuQHOJNPUPG=D\+ÃXNPvNPUjD5FHIzRTNPGHNÃXNPvNPUjD ]PIWF=DmD&f[JHhλSZBf (x) dx =Zf (x) λ(dx).(7.5)B¾ x axCE t£H-c\*I&JOHI]^Jl¨G=D&]^FHGHNjm*Nj\*NtOHQK¯ILm*OHI&stO=DLkHOHIgIFHGHNjm*Nj\=KoN^J+G=D&]PFHGHNjm*Nj\*NPOHQHNqkJIu]j\*Njm=b.N^J+O=D&FHGKHR¦bfäQszIFHGHNjm*Nj\*NPOHQK§ jnIvG=DJOHINOHNPWNPGHOHI)kJIz]j\*Njm=bN^J"QsEsLD&RTNPk=D&OHQK+ @ js ã t × w Æß.ÞàHv²c«ª« w ®ß&®Hv²1®u® Î(x Þ.Ù Øx «¬« w «H®vy¾xSaxCE§ ¢scIFHGHNjm*Nj\*NPOHQKy £S]j\*Njm=bN^JnkJIS]PII&JOHI&pNPOHQHN5 £ |PYHWQHW.D\*NPOJOHI9]PII&JOHI&pNPOHQHf ÖFξ (x) =Zxf (u) du,(7.6)−∞&I JYbtmD]j\*Njm=bN^Jn&kJIW[JIkHYDVn&WcYI&JIGH_:VZbOHYHHQKm*QHZEZENPGHNPOHHQHGb.NPRaDnFξ (x)F\*I&JOHI]^Jl9RTILM9OHI5QH]PYDJl9FHI5ZEIGHR¦bL\*Nf (x) =dF (x).dx(7.7) I]^JD\*lOH_:VqJIkHYDV F\*I&JOHI]^Jl+RTILM9OHIyFHI\*ILM9QJluG=DWOHId)\*fcvIR¦b)OHNPI&JGHQoÇ=DJNj\*lOHIR¦bykHQH]j\=b¾x axCE ¥ L¦s']PII&JOHI&pNPOHQK1 . E]j\*Njm=bN^JnTkJI)ZbOHYHHQK§G=D&]joFHGHNjm*Nj\*NPOHQK+D&v]PI\*f[JOHI5OHNPFHGHNPGH_-WOHIUPIzsLD&YIO=DKHW\=KHN^J]rKuOHNPFHGHNPGH_-WOHIdO=DIR-¤EÁ¤EçcIkHNPR¦b G=D&]PFHGHNjm*Nj\*NPOHQHN&n¦IFHGHNjm*Nj\*NPOHOHIN"W £ Q . jnO=Dst_:oW.D&N^J]rKOHNPFHGHNPGH_-WOH_-Rw¤[ T::IoFHNPGHW_:VnRTNPG=D O=Dst_-W.D&N^J]rK=nI&JOHIoP]PQJNj\*lOHIRTNPGH_ nNP]j\*QmH\=K+\*fcvIUPIyRTOHILM5NP]^JWD nmH\=K YI&JIGHIUPIÄD&OHOHIλNcb]j\*IWQHP(B)NIkHNP=WQ0m*OHI]j\*Njm=bN^JzQsz £ QqÔ¢B jnFHI]PYI\*lYbnNP]joλ(B) = 0\*Q9mH\*QHO=DQHOJNPGHW.D\DG=D&WOKHN^J]rKyObL\*fSnJI5QHOJNPUPG=D\+FHI|^JIR¦b"QHOJNPGHW.D\=bBJILMNEG=D&WNPOuObt\*fS:IoW&JIGH_:Vn¦ZbOHYHHQKO=Dst_-W.D&N^J]rKqO=DnF (x)IRNP]j\*QqmH\=K)\*fcvIUPI]^biNP]^J.W&bNPJJD&YINnkJI'mH\=Kq\*fcvI&dYIOHNPkHOHIdε>0δ >0]PQH]^JNPRT_`FHIF=D&GHOHI%OHNPFHNPGHNP]PNPYD&f[iQV]KXQHOJNPGHW.D\*IWnn(ak , bk ) ⊂ IR k = 1, .