Лекции по операционным системам (1114687), страница 4
Текст из файла (страница 4)
-
Тестирование.
Другим компонентом данного этапа является отладка. Отладка — это поиск, локализация и исправление зафиксированных при тестировании или в процессе эксплуатации ошибок. Для обеспечения процесса отладки используются специальные программные средства — отладчики. Средства отладки существенно зависят от типа и назначения создаваемой программной системы.
Этап ввода программной системы в эксплуатацию (внедрение) и сопровождения. Немаловажным этапом жизненного цикла программы в вычислительной системе является этап, связанный с представлением разрабатываемой программной системы в качестве программного продукта. Одним из основных требований, предъявляемых к программному продукту, является возможность эксплуатации соответствующей программной системы без постоянного участия разработчика программы. Это достигается, с одной стороны, соответствующей надежностью программы (для этого программа должна быть максимально полно протестирована и устойчива к всевозможным комбинациям входных данных), а с другой стороны — это наличие подробной и адекватной программе документации, необходимой для всех категорий пользователей данной программной системы (пользователь, системный программист, администратор, оператор и т.п.).
Итак, мы рассмотрели основные этапы жизненного цикла программы в вычислительной системе. При создании различных программных систем, при использовании различных технологий разработки данные этапы могут выполняться как линейно, так и итерационно, с возвратами от одного этапа к другому, последовательными уточнениями спецификаций и расширением реализации программной системы. Современные технологии разработки программного обеспечения специфицируют различные модели организации жизненного цикла программной системы. Традиционная модель — каскадная модель (Рис. 10.) — представляет разработку в виде строго линейной последовательности этапов, каждый из которых заканчивается фиксацией результата, и только после этого начинается последующий.
-
Каскадная модель.
В определенном смысле эта модель является вырожденной, т.к. соблюсти эти правила на практике достаточно сложно. Примером может служить связка этапа тестирования и отладки с предшествующими этапами, которая по своей сути итерационна (после обнаружения и локализации ошибки зачастую необходимо вернуться к этапу кодирования, а возможно и проектирования). Прагматическим развитием каскадной модели является каскадная итерационная модель (Рис. 11.), которая в общем случае, предоставляет возможность осуществления анализа полученных на этапе результатов и возврат к любому предшествующему этапу.
-
Каскадная итерационная модель.
Современные технологии разработки программного обеспечения помимо каскадной модели используют и другие модели организации жизненного цикла программных систем. В частности, популярной является спиральная модель организации жизненного цикла (Рис. 12.).
Данная модель основана на том, что процесс разработки программной системы складывается из последовательности "спиралей", каждая из которых включает этапы проектирования, кодирования, тестирования и получения результата. Под результатом понимается очередная детализация проекта и получение последовательности программ — прототипов. Прототип — программа, реализующая частичную функциональность и внешние интерфейсы разрабатываемой системы. Последовательность прототипов, в конечном счете, сходится к реализации программной системы. А детализации проекта, в итоге, превращаются в полный проект системы.
-
Спиральная модель.
Вернемся к рассмотрению следующего уровня иерархической организации вычислительных систем — к уровню систем программирования. Система программирования — комплекс программ, обеспечивающий поддержание этапов жизненного цикла программы в вычислительной системе. Этапы жизненного цикла программы оставались в той или иной мере неизменными с момента зарождения вычислительных систем, т.к. всегда были и решались проблемы проектирования программной системы, кодирования, тестирования и отладки, подготовки эксплуатационной документации и сопровождения. В тоже время, определение системы программирования как комплекса программных средств, предназначенных для автоматизации этапов жизненного цикла программы, изменялось постоянно вместе с появлением и развитием данных средств. Рассмотрим развитие состава и основных функций понятия система программирования в хронологии развития вычислительных систем.
Начало 50-х годов ХХ века. Первые системы автоматизации программирования. Система программирования или система автоматизации программирования включала в себя ассемблер (или автокод) и загрузчик. Несколько позднее появились библиотеки стандартных программ и макрогенераторы. Основная функция первых систем программирования — предоставление программисту системы мнемонического обозначения компьютерных команд и данных, используемых в программах, а также предоставление возможности создавать и использовать библиотеки программ.
Середина 50-х — начало 60-х годов ХХ века. Появление и распространение языков программирования высокого уровня (Фортран, Алгол-60, Кобол и др.). Формирование концепций модульного программирования. Система программирования: макроассемблеры, трансляторы языков высокого уровня, редакторы внешних связей, загрузчики.
Середина 60-х — начало 90-х годов ХХ века. Развитие интерактивных и персональных систем, появление и развитие языков объектно-ориентированного программирования. Система программирования: трансляторы языков программирования, редакторы внешних связей, загрузчики, средства поддержания библиотек программ, интерактивные и пакетные средства отладки программ, системы контроля версий, средства поддержки проектов.
90-е годы ХХ века — настоящее время. Появление промышленных средств автоматизации проектирования программного обеспечения, CASE-средств (Computer-Aided Software/System Engineering), унифицированного языка моделирования UML. Системы программирования: интегрированные системы, предоставляющие комплексные решения в автоматизации проектирования, кодирования, тестирования, отладки и сопровождения программного обеспечения.
Мы видим, что интерпретация термина система программирование претерпела изменение от самого примитивного: «система программирования — это транслятор языка программирования и средства редактирования связей », — до современного: «система программирования — это комплекс программ, обеспечивающий технологию автоматизации проектирования, кодирования, тестирования, отладки и сопровождения программного обеспечения ». Функции конкретной системы программирования определяются составом программных компонентов, которые могут использоваться для поддержания этапов жизненного цикла программы, и степенью интеграции этих компонентов. Таким образом, системой программирования будет являться как система, включающая только транслятор языка Си, ассемблер, редактор связей и интерактивный отладчик, так и, например, система Rational Rose — набор объектно-ориентированных CASE-средств, предназначенных для автоматизации процессов анализа, моделирования и проектирования с использованием UML, а также для автоматической генерации кодов программ на различных языках (C++, Java и пр.), разработки проектной документации и реверсного инжиниринга программ. На сегодняшний день выбор конкретной системы программирования во многом зависит как от масштабности и сложности решаемой задачи автоматизации, так и от квалификации программистов.
Уровень системы программирования основывается на доступе к виртуальным и физическим ресурсам, предоставляемым операционной системой (или уровнями управления физическими и виртуальными ресурсами), и предоставляет программистам инструментальные средства разработки программных систем, каждая из которых предназначена для решения своего круга задач.
1.1.6Прикладные системы
Итак, мы переходим к вершине структурной организации вычислительных систем — к уровню прикладного программного обеспечения. Прикладная система — это программная система, ориентированная на решение или автоматизацию решения задач из конкретной предметной области. Прикладная система является прагматической основой всей вычислительной системы, так как, в конечном счете, именно для решения конкретных прикладных задач создавались все те уровни вычислительной системы, которые мы рассмотрели к настоящему времени.
В истории развития прикладных систем можно выделить четыре этапа. Первый — прикладные системы компьютеров первого поколения. Основной характеристикой данных систем являлось то, что для автоматизации решения каждой конкретной задачи создавалась уникальная программная система, которая не предполагала возможность модификации функциональности, переноса с одной вычислительной системы на другую (Рис. 13.). Пользовательского интерфейса не было, как такового. Подавляющее большинство решаемых прикладных задач было связано с моделированием физических процессов, и, в свою очередь, результаты моделирования представлялись в виде последовательностей чисел и числовых таблиц. Уровень инструментальных средств программирования, доступных для решения прикладных задач, накладывал достаточно жесткие требования к квалификации специалистов, занимающихся автоматизацией решения прикладных задач. Кроме знания предметной области, алгоритмов и методов решения соответствующих прикладных задач программист должен был владеть средствами программирования компьютеров первого поколения — уметь использовать для этих целей систему команд или ассемблер компьютера.
-
Первый этап развития прикладных систем.
Второй этап — развитие систем программирования и появление средств создания и использования библиотек программ (Рис. 14.).
-
Второй этап развития прикладных систем.
Библиотеки прикладных программ позволили аккумулировать и многократно использовать практический опыт численного решения типовых задач из конкретных предметных областей. Составляющие библиотеку подпрограммы служили "строительными блоками", которые в интеграции с системами программирования использовались для разработки прикладных систем. Библиотеки прикладных программ стали одними из первых программных систем, которые могли относиться к категории программных продуктов — документированных, прошедших детальное тестирование, распространенное в пользовательской среде. Библиотеки прикладных программ, наверное, были одними из первых коммерческих программных продуктов, т.е. они являлись интеллектуальным товаром, который можно было продать и купить. Примером может служить библиотека программ численного интегрирования, включающая в свой состав подпрограммы, реализующие всевозможные методы численного нахождения значений определенных интегралов. Библиотеки прикладных программ существенно упростили процесс разработки прикладных систем, однако требования к квалификации прикладного программиста оставались достаточно высокими. Прикладные системы этого этапа создавались с использованием стандартных систем программирования и в большей части были уникальны: создавались для решения конкретной задачи в конкретных условиях.
Третий этап характеризуется появлением пакетов прикладных программ (ППП), которые включали в себя программные продукты (Рис. 15.), предназначенные для решения широкого комплекса задач из конкретной прикладной области и обладающие следующими свойствами:
-
программные продукты имели развитые, стандартизованные пользовательские интерфейсы, не требующие высокой программисткой квалификации от прикладного пользователя и значительных затрат на их освоение;
-
Третий этап развития прикладных систем.
-
функциональные возможности прикладных программ, входящих в состав ППП и их пользовательские интерфейсы позволяли решать разнообразные задачи данной прикладной области;
-
возможно совместное использование программных продуктов, входящих в состав ППП при решении конкретных задач.
Примерами наиболее распространенных пакетов прикладных программ могут служить Microsoft Office (Рис. 16.), предназначенный для автоматизации офисной деятельности или пакет MathCAD (Рис. 17.), предназначенный для решения задач, связанных с математическими и техническими расчетами.
-
Пакет программ Microsoft Office.
-
Пакет MathCAD.
Современный этап — это этап комплексных, адаптируемых к конкретным условиям программных систем автоматизации прикладных процессов, построенных на основе развития концепций пакетов прикладных, интегрированных с современными системами программирования и использующими передовые технологии проектирования и разработки программного обеспечения. Особое развитие получили системы автоматизации бизнес-процессов.
Рассмотрим основные тенденции в развитии современных прикладных систем.
-
Стандартизация моделей автоматизируемых бизнес-процессов и построение в соответствии с данными моделями прикладных систем управления. В результате детального анализа и структуризации процессов, происходящих на различных уровнях управления предприятиями, взаимодействия предприятий друг с другом или взаимодействия предприятия с потребителями были стандартизованы разнообразные модели бизнес-процессов и, в свою очередь, появились прикладные системы, ориентированные на их автоматизацию. Примером могут служить следующие разновидности систем:
-
B2B-система (business to business), обеспечивающая поддержку модели межкорпоративной торговли продукцией с использованием Internet (примером может служить электронные биржи);
-
B2C-система (business to customer), обеспечивающая поддержку в Internet модели торговых отношений между предприятием и частным лицом — потребителем (примером может служить Интернет-магазин);
-
ERP (Enterprise Resource Planning) — планирование ресурсов в масштабе предприятия, автоматизированная система управлением предприятием;
-
CRM (Customer Relationship Management) — система управления взаимоотношениями с клиентами.
-
Открытость системы: потребителю системы открыты прикладные интерфейсы, обеспечивающие основную функциональность системы, а также стандарты организации внутренних данных. Прикладные интерфейсы (API — Application Programming Interface) совместно со стандартными средствами систем программирования, системы шаблонов и специализированные средства настройки прикладной системы позволяют адаптировать и развивать функциональные возможности прикладных систем к особенностям конкретного потребителя системы. Примером может служить система BAAN, предназначенная для комплексного решения задач автоматизации бизнес-процессов предприятия (Рис. 18.). Система включает в себя модули, обеспечивающие мониторинг текущей деятельности предприятия, финансовый учет и отчетность, планирование производства, поддержку управления проектами, финансовыми средствами, инвестициями, закупкой и сбытом продукции, и т.п. Кроме того, система позволяет пользователю дополнять существующую функциональность собственными разработками: для этого предназначена подсистема «Инструментарий», в которой предоставляются средства разработки новых приложений. Стандартизация организации внутренних данных прикладных систем и их открытость создают возможности для существенного упрощения интеграции данных систем с другими прикладными системами и программами. Примером может служить использование XML (Extensible Markup Language — расширяемый язык разметки) в качестве открытого стандарта для описания бизнес-объектов и протоколов обмена данными в В2В приложениях.
Использование современных технологий и моделей организации системы: Internet/Intranet-технологии, средства и методы объектно-ориентрованного программирования (ООП), модель клиент/сервер, технологии организации хранилищ данных и аналитической обработки данных с целью выявления закономерностей и прогнозирования решений, и др.
-
Система BaaN.
Современная прикладная система предполагает глубокую интеграцию всех компонентов вычислительной системы: аппаратной части, операционной системы, системы программирования. В итоге, возможно разделение пользователей прикладной системы на следующие категории:
-
оператор или прикладной пользователь, оперируя средствами пользовательского интерфейса и функциональными возможностями системы, решает конкретные прикладные задачи. Примером может служить работа инженера по проектированию оборудования с использованием системы AutoCAD или работа менеджера крупной компании, использующей аналитические средства системы управления бизнесом на основе решений BAAN;
-
системный программист — пользователь компонентов прикладной системы, обеспечивающий возможности интеграции данной системы в конкретной вычислительной системе, возможности настройки в соответствии с конкретными особенностями эксплуатации системы на конкретном предприятии, доработку функциональных возможностей системы, удовлетворяющих потребностям и особенности эксплуатации. Например, применение пакета Microsoft Office с точки зрения системного программиста может варьироваться от автоматизации часто повторяющейся последовательности действий путем написания так называемых «макросов» до создания новых интерактивных приложений, функционирующих в среде MS Office. Основу технологии автоматизации на базе MS Office составляет предоставление офисных приложений в виде унифицированной иерархической объектной модели и использование единого внутреннего механизма программирования приложений на основе Visual Basic for Applications (VBA);
-
системный администратор обеспечивает выполнение текущих работ по поддержке функционирования программной системы в конкретных условиях: в их состав могут входить регистрация пользователей и распределение полномочий и прав между ними, контроль за обеспечение сохранности и целостности данных, фиксация проблем, возникающих в процессе эксплуатации, и обоснованное выполнение обновлений системы, поступающих от разработчика.
Каждой категории пользователей прикладной системы предоставлены свои, специализированные средства работы, которые предназначены для решения конкретных задач данного пользователя.
1.1.7Выводы, литература
Мы рассмотрели основные уровни структурной организации вычислительной системы. Следует отметить, что рассмотренная нами модель организации вычислительной системы не единственная: существуют и другие подходы в определении структуры ВС, но в большинстве случаев отличия не являются принципиальными. Выбранная нами модель служит основой для дальнейшего изложения материала.