Дезоксирибонуклеиновая кислота (1113535), страница 3
Текст из файла (страница 3)
В процессе репликации ДНК, ДНК-зависимая ДНК-полимераза синтезирует копию исходной последовательности ДНК. Точность очень важна в этом процессе, так как ошибки в полимеризации приведут к мутациям, поэтому многие полимеразы обладают способностью к «редактированию» — исправлению ошибок. Полимераза узнаёт ошибки в синтезе по отсутствию спаривания между неправильными нуклеотидами. После определения отсутствия спаривания активируется 3'--> 5' экзонуклеазная активность полимеразы и неправильное основание удаляется. В большинстве организмов ДНК-полимеразы работают в виде большого комплекса, называемого реплисомой, которая содержит многочисленные дополнительные субъединицы, например, хеликазы.
РНК-зависимые ДНК-полимеразы — специализированный тип полимераз, которые копируют последовательность РНК на ДНК. К этому типу относится вирусный фермент обратная транскриптаза, который используется ретровирусами при инфекции клеток, а также теломераза, необходимая для репликации теломер. Теломераза — необычный фермент, потому что она содержит собственную матричную РНК.
Транскрипция осуществляется ДНК-зависимой РНК-полимеразой, которая копирует последовательность ДНК одной цепочки на мРНК. В начале транскрипции гена РНК-полимераза присоединяется к последовательности в начале гена, называемой промотором, и расплетает спираль ДНК. Потом она копирует последовательность гена на матричную РНК до тех пор, пока не дойдёт до участка ДНК в конце гена — терминатора, где она останавливается и отсоединяется от ДНК. Также как ДНК-зависимая ДНК-полимераза человека, РНК-полимераза II, которая транскрибирует большую часть генов в геноме человека, работает в составе большого белкового комплекса, содержащего регуляторные и дополнительные единицы.
Генетическая рекомбинация
Рекомбинация происходит в результате физического разрыва в хромосомах (М) и (F) и их последующего соединения с образованием двух новых хромосом (C1 and C2)
Двойная спираль ДНК обычно не взаимодействует с другими сегментами ДНК, и в человеческих клетках разные хромосомы пространственно разделены в ядре. Это расстояние между разными хромосомами важно для способности ДНК действовать в качестве стабильного носителя информации. В процессе рекомбинации с помощью ферментов две спирали ДНК разрываются, обмениваются участками, после чего непрерывность спиралей восстанавливается, поэтому обмен участками негомологичных хромосом может привести к повреждению целостности генетического материала.
Рекомбинация позволяет хромосомам обмениваться генетической информацией, в результате этого образуются новые комбинации генов, что увеличивает эффективность естественного отбора и важно для быстрой эволюции новых белков. Генетическая рекомбинация также играет роль в репарации, особенно в ответе клетки на разрыв обеих цепей ДНК.
Самая распространённая форма кроссинговера — это гомологичная рекомбинация, когда принимающие участие в рекомбинации хромосомы имеют очень похожие последовательности. Иногда в качестве участков гомологии выступают транспозоны. Негомологичная рекомбинация может привести к повреждению клетки, поскольку в результате такой рекомбинации возникают транслокации. Реакция рекомбинации катализируется ферментами, которые называются рекомбиназы, напрмер, Cre. На первом этапе реакции рекомбиназа делает разрыв в одной из цепей ДНК, позволяя этой цепи отделиться от комплементарной цепи и присоединится к одной из цепей второй хроматиды. Второй разрыв в цепи второй хроматиды позволяет ей также отделиться и присоединится к оставшейся без пары цепи из первой хроматиды, фомируя структуру Холлидея. Структура Холлидея может передвигаться вдоль соединённой пары хромосом, меняя цепи местами. Реакция рекомбинации завершается, когда фермент разрезает соединение, а две цепи лигируются.
Эволюция метаболизма, основанного на ДНК
ДНК содержит генетическую информацию, которая делает возможной жизнедеятельность, рост, развитие и размножение всех современных организмов. Однако как долго в течение четырёх миллиардов лет истории жизни на Земле ДНК была главным носителем генетической информации, неизвестно. Существуют гипотезы, что РНК играла центральную роль в обмене веществ, поскольку она может и переносить генетическую информацию, и осуществлять катализ с помощью рибозимов[66][75][76]. Кроме того, РНК — один из основных компонентов «фабрик белка» — рибосомы. Древний РНК-мир, где нуклеиновая кислота была использована и для катализа и для переноса информации мог послужить источником современного генетического кода, состоящего из четырёх оснований. Это могло произойти в результате того, что число оснований в организме было компромиссом между небольшим числом оснований, увеличивавшим точность репликации, и большим числом оснований, увеличивающим каталитическую активность рибозимов [77].
К сожалению, древние генетические системы не дошли до наших дней. ДНК в окружающей среде в среднем сохраняется в течение 1 миллиона лет, а потом деградирует до коротких фрагментов. Извлечение ДНК и определение последовательности их 16S рРНК генов из заключённых в янтаре, образовавшемся 250 млн лет назад, бактериальных спор[78] служит темой оживлённой дискуссии в научной среде[79][80].
Использование ДНК в технологии
Генетическая инженерия
Современные биология и биохимия интенсивно используют методы, основанные на рекомбинантной ДНК. Рекомбинантная ДНК - искусственно созданая человеком последовательность ДНК, части которой могут быть синтезированы химическим путём, с помощью ПЦР (полимеразная цепная реакция) или клонированы из ДНК различных организмов. Рекомбинантные ДНК могут быть трансформированы в клетки живых организмов в составе плазмид или вирусных векторов. Генетически модифицированные животные и растения обычно содержат рекомбинантные гены, встроенные в их хромосомы. В то время как генетически модифицированные бактерии и дрожжи используются для производства рекомбинантных белков, животные используются в медицинских исследованиях, а растения с улучшенными пищевыми качествами - в сельском хозяйстве.
Судебно-медицинская экспертиза
Судмедэксперты используют ДНК в крови, сперме, коже, слюне или волосах, обнаруженных на месте преступления для обнаружения преступника. Процесс идентификации называется генетический фингерпринтинг более точно, определение профиля ДНК. В фингерпринтинге сравниваются вариабельные ДНК генома, например, короткие тандемные повторы и минисателлитные последовательности разных людей. Это очень надёжный метод определения преступников, хотя определение может быть затруднено при загрязнении сцены преступления ДНК других людей.
Фингерпринтинг был изобретён в 1984 британским генетиком Алеком Джеффрейс (Alec Jeffreys) [7] и впервые был использован как доказательство в суде над Колином Питчфорком (Colin Pitchfork) в деле, где он был обвинён в убийстве и изнасиловании.
В настоящее время во многих западных странах, например, Великобритании у преступников, обвинённых в преступлениях некоторых типов, забирается образец ДНК для базы данных. Это помогло обнаружить виновных в ранее нераскрытых преступлениях, поскольку ДНК сохраняется на вещественных доказательствах. Ещё этот метод используется для определения личности в случае массовой гибели людей.
Биоинформатика
Биоинформатика включает в себя обработку данных (data mining), содержашихся в последовательности ДНК. Развитие компьютерных методов для сохранения и поиска такой информации привели к развитию применяемых и в других областях направлений информатики, как ССА (string searching algorithm), машинное обучение и базы данных. Алгоритмы типа ССА, которые ищут определённую последовательность букв в большей последовательности букв, были разработаны для поиска специфических последовательностей нуклеотидов. В других компьютерных приложениях, например, текстовых редакторах самые простые алгоритмы справляются с этой задачей, но последовательности ДНК относятся к наиболее трудно обрабатываемым, потому что они состоят всего из четырёх букв. Сходная проблема возникает при сравнении последовательностей из разных организмов (sequence alignment), которое используется в изучении филогенетических взаимоотношений между этими организмами и функций белков [12]. Данные, представляющие собой последовательность целых геномов, одним из наиболее сложным из которых является геном человека, трудно использовать без описания, которое указывает на положение генов и регуляторных последовательностей на каждой хромосоме. Участки ДНК, последовательности которых содержат последовательности, ассоциированные с генами, кодирующими белки или РНК, могут быть найдены с помощью специальных алгоритмов, которые позволяют предсказать наличие продуктов экспресии генов до их выявления в результате экспериментов
Изображение (А)"Плитка", которая состоит из четырёх молекул ДНК, ориентированных 90° относительно друг друга. Из этих плиток можно построить ДНК-наносеть (Б)
ДНК и компьютеры нового поколения
ДНК впервые была использована в вычислительной технике для решения "проблемы пути Гамильтона" [1], частного случая NP-полной задачи. ДНК-компьютер имееет преимущества относительно электронных компьютеров, поскольку теоретически требует меньше электричества, занимает меньше места и более эффективен из-за возможности одновременных подсчётов (смотри Параллельные вычислительные системы). Другие задачи, например, "абстрактных машин" [2], задача выполнимости булевых формул и вариант задачи коммивояжёра были проанализированы с помощью ДНК-компьютеров. Из-за компактности ДНК она теоретически может найти применение в криптографии, где она может использоваться для конструирования одноразовых шифроблокнотов.
История и антропология
Поскольку с течением времени в ДНК накапливаются мутации, которые затем передаются по наследству, она содержит историческую информацию, поэтому генетики могут предположить эволюционную историю организмов (филогенетика). Филогенетика - метод эволюционной биологии. Если сравниваются последовательности ДНК внутри вида, эволюционные генетики могут узнать историю отдельных популяций. Эта информация может быть полезна в разных областях науки, начиная с экологической генетики и заканчивая антропологией, например, ДНК использована в идентификации десяти потерянных колен израилевых. ДНК используется для определения отцовства и родственных взаимоотношений, например, было доказано, что третий президент США Томас Джефферсон был отцом ребёнка рабыни Салли Хемингс. В России останки семьи последнего царя Российской Империи Николая II были также идентифицированы с помощью образцов ДНК, взятых у ныне живущих родственников царя. Используемый в таких случаях метод похож на тот, который применяют в криминалистике (см. выше), иногда доказательством виновности является общие специфические характеристики ДНК, обнаруженной на сцене преступления и ДНК родственников преступника.
О диночная ДНК состоит из двух нитей, спаренных комплементарно своими двумя парами азотистых оснований. Хромосома образуется из двух одиночных хроматид.
11