Диссертация (1105508), страница 21
Текст из файла (страница 21)
Cao //Curr. Nanosci. – 2012. – V. 8. – P. 64–67.153. Duan L. Influence of reaction Conditions on the Phase Composition, Particle Sizeand Magnetic Properties of YFeO3 Microcrystals Synthesized by HydrothermalMethod / L. Duan, G.-J. Jiang, W. Peng, M. Cheng, X.-J. Wang // J. Synth. Cryst.– 2015. – V.
44. – № 8. – P. 2144–2149.154. Racu A.V. Direct low temperature hydrothermal synthesis of YFeO 3 microcrystals/ A.V. Racu, D.H. Ursu, O.V. Kuliukova, C. Logofatu, A. Leca, M. Miclau // Mater.Lett. – 2015. – V. 140. – № 1. – P. 107–110.155. Kolb E.D. The Hydrothermal Growth of Rare Earth Orthoferrites / E.D. Kolb // J.Appl. Phys. – 1968.
– V. 39. – № 2. – P. 1362-1364.156. Shen H. Magnetic and thermal properties of perovskite YFeO 3 single crystals / H.130Shen, J. Xu, A. Wu, J. Zhao, M. Shi // Mater. Sci. Eng. B Solid-State Mater. Adv.Technol. – 2009. – V. 157. – № 1–3. – P. 77–80.157. Cheng Z.X. Magnetocapacitance effect in nonmultiferroic YFeO 3 single crystal /Z.X.
Cheng, H. Shen, J.Y. Xu, P. Liu, S.J. Zhang, J.L. Wang, X.L. Wang, S.X. Dou// J. Appl. Phys. – 2012. – V. 111. – № 3. P. 34103.158. Cheng M. YFeO3 with (202)-Preferred Orientation Synthesized by HydrothermalProcess and the Study of Magnetic Properties / M. Cheng, G. Jiang, L. Wu, L. Duan,W. Peng, Q. Xiao, C.
He // J. Supercond. Nov. Magn. – 2016. – V. 29. – № 2. – P.457–461.159. Ravindranathan P. Preparation, characterization and thermal analysis of metalhydrazinocarboxylate derivatives / P. Ravindranathan, K.C. Patil // Proc. IndianAcad. Sci. – 1985. – V. 95. – № 4. – P. 345–356.160. Ravindranathan P. A one-step process for the preparation of γ-Fe2O3 /avindranathan P., Patil K.C. // J.
Mater. Sci. Lett. – 1986. – V. 5. – № 2. – P. 221–222.161. Yanovskaya M.I. Alkoxy-derived oxide phases of the system Fe2O3-Y2O3 / M.I.Yanovskaya, T.V. Rogova, S.A.Ivanov, N.V. Kolganova, N.Ya. Turova // J. Mater.Sci. Lett. – 1987. – V. 6. – № 3. – P. 274–276.162. Yanovskaya M.I. Application of metal alkoxides in the synthesis of oxides / M.I.Yanovskaya, E.P.
Turevskaya, V.G. Kessler, I.E. Obvintseva, N.Ya. Turova //Integr. Ferroelectr. – 1992. – V. 1. – № 2–4. – P. 343–352.163. Patil K. Combustion synthesis: an update / K. Patil, S. Aruna, T. Mimani // Curr.Opin. Solid State Mater. – 2002. – V. 6. – № 2002. – P. 507–512.164. Varma A. Combustion Synthesis of Nanoscale Oxide Powders: Mechanism,Characterization and Properties / A. Varma, A.S. Mukasyan, K.T. Deshpande, P.Pranda, P.R. Erri // MRS Proc. – 2003. – V. 800. – P. AA4.1- AA4.12.165. Mukasyan A.S. Solution combustion synthesis of nanomaterials / A.S.
Mukasyan,P. Epstein, P. Dinka // Proc. Combust. Inst. – 2007. – V. 31. – № 2. – P. 1789–1795.166. Журавлев В.Д. Синтез высокодисперсного оксида алюминия глициннитратным методом / В.Д. Журавлев, В.Г. Васильев, Е.В. Владимирова, В.Г.Шевченко, И.Г. Григоров, В.Г. Бамбуров, А.Р. Бекетов, М.В. Баранов //Физика и химия стекла. – 2010. – Т. 36. – № 4. – С.
632-640.167. Zhuravlev V.D. Solution combustion synthesis of α-Al2O3 using urea / V.D.Zhuravlev, V.G. Bamburov, A.R. Beketov, L.A. Perelyaeva, I.V. Baklanova, O.V.Sivtsova, V.G. Vasil'ev, E.V. Vladimirova, V.G. Shevchenko, I.G. Grigorov. //Ceram. Int. – 2013. – V. 39. – № 2. – P. 1379–1384.168. Patil K.C. Chemistry of Nanocrystalline Oxide Materials - Combustion Synthesis,Properties and Applications / K.C. Patil, M.S.
Hegde, T. Rattan, S.T. Aruna.Singapore: World Scientific Publishing Co. Pte. Ltd. – 2008. – 364 p.131169. Rogachev A.S. Combustion of heterogeneous nanostructural systems / A.S.Rogachev, A.S. Mukasyan // Combust. Explos. Shock Waves. – 2010. – V. 46. – №3. – P. 243–266.170. Rogachev A.S. Combustion for Material Synthesis /Mukasyan. Boca Raton: CRC Press. – 2014. – 424 p.A.S.Rogachev,A.S.171. Varma A. Solution Combustion Synthesis of Nanoscale Materials / A. Varma, A.S.Mukasyan, A.S. Rogachev, K.V.
Manukyan // Chem. Rev. – 2016. – V.116. – №23. – P. 14493–14586172. Ye T. Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Euphosphors / T. Ye, Z. Guiwen, Z. Weiping, X. Shangda // Mater. Res. Bull. – 1997.– V. 32. – № 5. – P. 501–506.173. Nagaveni K. Structure and Photocatalytic Activity of Ti1-xMxO2±δ (M = W, V, Ce,Zr, Fe, and Cu) Synthesized by Solution Combustion Method / K. Nagaveni, M.S.Hegde, G. Madras // J.
Phys. Chem. B. – 2004. – V. 108. – № 52. – P. 20204–20212.174. Mokkelbost T. Combustion Synthesis and Characterization of NanocrystallineCeO2 -Based Powders / T. Mokkelbost, I. Kaus, T. Grande, M.-A. Einarsrud //Chem. Mater. – 2004. – V. 16. – № 25. – P. 5489–5494.175. Jose R. A new combustion process for nanosized YBa 2ZrO5.5 powders / R. Jose, J.James, A.M.
John, D. Sundararaman, R. Divakar, J. Koshy // Nanostructured Mater.– 1999. – V. 11. – № 5. – P. 623–629.176. Chiu T.-W. Synthesis of nanosized CuCrO 2 porous powders via a self-combustionglycine nitrate process / T.-W. Chiu, B.-S. Yu, Y.-R. Wang, K.-T.Chen, Y.-T. Lin// J. Alloys Compd. – 2011. – V. 509. – № 6.
– P. 2933–2935.177. Zhang J. Synthesis, Sintering Behavior and Morphology of β-tricalcium Phosphatevia sol-gel self-propagating Combustion Technique / J. Zhang, B. Song, S. Li // J.Mater. Sci. Eng. – 2009. – V. 3. – № 3. – P. 3–5.178. Комлев А.А. Получение нанопорошков нестехиометрической магнийжелезистой шпинели методом глицин-нитратного горения / А.А. Комлев, В.В.Гусаров // Неорганические материалы. – 2014. – Т. 50. – № 12. – С. 1346-1351.179. Журавлев В.Д. Получение нанооксидов меди и никеля / В.Д.
Журавлев, К.В.Нефедова, О.Г. Резницких // Альтернативная энергетика и экология. – 2007. –Т. 8. – № 52. – С. 22–26.180. Нефедова К.В. Исследование условий синтеза тонкодисперсных оксидовникеля, кобальта и марганца / К.В. Нефедова, В.Д. Журавлев //Перспективные материалы. – 2011. – Т. 12. – С.
380–386.181. Халиуллин Ш.М. Синтез CaZrO3 в реакциях горения с глицином / Ш.М.Халиуллин, В.Г. Бамбуров, О.В. Русских, А.А. Остроушко, В.Д. Журавлев //ДАН. – 2015. – Т. 461. – № 4. – С. 418–420.182. Ciambelli P. AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 perovskites as methane132combustion and CO oxidation catalysts: structural, redox and catalytic properties /P. Ciambelli, S. Cimino, S.
De Rossi, L. Lisi, G. Minelli, P. Porta, G. Russo // Appl.Catal. B Environ. – 2001. – V. 29. – № 4. – P. 239–250.183. Shan W. Structural Characteristics and Redox Behaviors of Ce1-xCuxOy SolidSolutions / W. Shan, W. Shen, C. Li // Chem. Mater. – 2003. – V.
15. – № 25. – P.4761–4767.184. Murugan B. Nature of Manganese Species in Ce1-xMnxO2-δ Solid SolutionsSynthesized by the Solution Combustion Route / B. Murugan, A.V. Ramaswamy,D. Srinivas, C.S. Gopinath, V. Ramaswamy // Chem. Mater. – 2005. – V. 17. – №15. – P. 3983–3993.185. Bansal N.P. Combustion synthesis of Sm0.5Sr0.5CoO3−x and La0.6Sr0.4CoO3−xnanopowders for solid oxide fuel cell cathodes / N.P. Bansal, Z.
Zhong // J. PowerSources. – 2006. – V. 158. – № 1. – P. 148–153.186. Комлев А.А. Получение и магнитные свойства нанокристаллическихпорошков на основе твердых растворов MgFe2O4·nFe2O3 / А.А. Комлев, А.С.Семенова // ЖПХ. – 2014. – Т. 87. – № 11.
– С. 1564-1567.187. Пикалова Е.Ю. Влияние метода синтеза на физико-химические свойстваCe0.8(Sm0.75Sr0.2Ba0.05)0.2O2-δ / Е.Ю. Пикалова, А.В. Никонов, В.Д. Журавлев,В.Г. Бамбуров, О.М. Саматов, А.С. Липилин, В.Р. Хрустов, И.В. Николаенко,С.В. Плаксин, Н.Г. Молчанова // Неорганические материалы. – 2011. – Т.
47.– № 4. – С. 452-457.188. Priolkar K.R. Formation of Ce1-xPdxO2-δ Solid Solution in Combustion-SynthesizedPd/CeO2 Catalyst: XRD, XPS, and EXAFS Investigation / K.R. Priolkar, P. Bera,P.R. Sarode, M.S. Hegde, S. Emura, R. Kumashiro, N.P. Lalla // Chem. Mater. –2002.
– V. 14. – № 5. – P. 2120–2128.189. Yang X. Synthesis of ZrO2/ZrW2O8 composites with low thermal expansion / X.Yang, X. Cheng, X. Yan, J. Yang, T. Fu, J. Qiu // Compos. Sci. Technol. – 2007. –V. 67. – № 6. – P. 1167–1171.190. Jiang H. Enhanced photocatalytic activity for degradation of methylene blue overV2O5/BiVO4 composite / H.
Jiang, M. Nagai, K. Kobayashi. // J. Alloys Compd. –2009. – V. 479. – № 1–2. – P. 821–827.191. Журавлев В.Д. Синтез никелевого кермета методом пиролиза / В.Д.Журавлев, Т.А. Патрушева, О.В. Сивцова // Новые порошковые икомпозиционные материалы, технологии, свойства. – 2006. – С. 1–4.192. Osinkin D.A. High-performance anode-supported solid oxide fuel cell withimpregnated electrodes / D.A. Osinkin, N.M. Bogdanovich, S.M. Beresnev, V.D.Zhuravlev // J.
Power Sources. – 2015. – V. 288. – P. 20–25.193. Zhuravlev V.D. Correlations among sintering temperature, shrinkage, and openporosity of 3.5YSZ/Al2O3 composites / V.D. Zhuravlev, Y.I. Komolikov, L.V.Ermakova// Ceram. Int. – 2016. – V. 42. – № 7. – P.
8005–8009.133194. Chick L.A. Glycine-nitrate combustion synthesis of oxide ceramic powders / L.A.Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J Exarhos // Mater.Lett. – 1990. – V. 10. – № 1–2. – P. 6–12.195. Aruna S.T. Combustion synthesis and nanomaterials / S.T. Aruna,A.S. Mukasyan// Curr. Opin. Solid State Mater. Sci. – 2008. – V. 12. – № 3–4. – P. 44–50.196.
Sutka A. Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials /A. Sutka, G. Mezinskis // Front. Mater. Sci. – 2012. – V. 6. – № 2. – P. 128–141.197. Gonzalez-Cortes S.L. Fundamentals, properties and applications of solid catalystsprepared by solution combustion synthesis (SCS) / S.L.
Gonzalez-Cortes, F.E.Imbert // Appl. Catal. A Gen. – 2013. – V. 452. – P. 117–131.198. Chen X. Self-propagating Combustion Synthesis of Nanocrystalline Yttrium IronOxide Solid Solution Photocatalysts / X. Chen, S.-J. Liang, J.-H. Bi, J. Gao, L. Wu// Chinese J.















