Диссертация (1104876), страница 17
Текст из файла (страница 17)
051703.22.M. A. Osipov, T. J. Sluckin, and S. J. Cox, Inuence of permanentmolecular dipoles on surface anchoring of nematic liquid crystals// Phys.Rev. E. - 1997. v.55. - P. 464.23.Devonshire, A.F., Theory of Ferroelectrics. Philosophical Magazine,Advances in Physics. 1954. v.3. - P.10(5).24.Boyer, L.L., et al., First principles calculations for ferroelectrics A vision.Ferroelec., 1990. v.111. P.1.25.Cohen, R.E., Origin of ferroelectricity in oxide ferroelectrics// Nature. 1992. v.358. P.136-138.26.Òàãàíöåâ À.
Ê., Ïèðî-, ïüåçî-, ôëåêñîýëåêòðè÷åñêèé è òåðìîïîëÿðèçàöèîííûé ýôôåêòû â èîííûõ êðèñòàëëàõ// ÓÔÍ. 1987. Ò.152. C.423448.27.W. Kuczynski and J. Homann, Determination of piezoelectric andexoelectric polarization in ferroelectric liquid crystals// 2005. Phys. Rev.E. v.72. P.
041701.28.King-Smith, R.D. and D. Vanderbilt, Theory of polarization of crystallinesolids. Phys. Rev. B. 1993. v.47(3). P.1651-1654.29.Resta, R., Macroscopic polarization in crystalline dielectrics: the geometricphase ap-proach. Rev. Mod. Phys. 1994. v.66. P.899-915.30.Fiolhais, C., F. Nogueira, and M. Marques, eds.
A Primer in DensityFunctional Theory// Lecture Notes in Physics. - 2003. v.620. Springer:New York. P.256.12731.Priya Gopal, Nicola A. Spaldin, Polarization, piezoelectric constants, andelastic constants of ZnO, MgO, and CdO// 2006. v.35. - Issue 4. - P.538-542.32.Starr M. B., Shi J. and Wang X. D., Piezopotential-Driven RedoxReactions at the Surface of Piezoelectric Materials// Angewandte ChemieInternational Edition. 2012. v.51. P. 59625966.33.Mantini G., Gao Y., D'Amico A., Falconi C. and Wang Z., Equilibriumpiezoelectric potential distribution in a deformed ZnO nanowire// NanoResearch. 2009. v.2. P.
624629.34.Ïîïëàâêî Þ.Ì., Ôèçèêà äèýëåêòðèêîâ. Êèåâ: Âèùà øêîëà. 1980.35.A. Kitaev, Ann. Phys. (N.Y.). Fault-tolerant quantum computation byanyons // 2003. v.303. Issue 1. P.2-30.36.S. Das Sarma, C. Nayak and S. Tewari. Proposal to stabilize and detecthalf-quantum vortices in strontium ruthenate thin lms: Non-Abelianbraiding statistics of vortices in a px + ipy superconductor// Phys. Rev.B. 2006.
v.73 P.220502(4).37.S. Tewari, S. Das Sarma, C. Nayak, C. W. Zhang and P. Zoller. QuantumComputation using Vortices and Majorana Zero Modes of a px + ipySuperuid of Fermionic Cold Atoms// Phys. Rev. Lett. 2007. v.98. P.010506(4).38.Ningning Hao, Ping Zhang, Jian Li, Wei Zhang, Yupeng Wang,arXiv:1004.5471.39.H. C. A. Oji and A. H. MacDonald. Magnetoplasma modes of the twodimensional electron gas at nonintegral lling factors// Phys. Rev. B. 1986. v.33. P.38103818.12840.E. Batke, D.
Heitmann, C.W. Tu. Plasmon and magnetoplasmonexcitation in two-dimensional electron space-charge layers on GaAs// Phys.Rev. B. 1986. v.34. P.69516960.41.L. J. Xu, X. G. Wu. Charge-density and spin-density excitations in a twodimensional electron gas with Rashba spin-orbit coupling// Phys. Rev. B. 2006.
v.74. P.165315(7).42.A. A. Burkov, Alvaro S. Nunez and A. H.MacDonald. Theory of spincharge-coupled transport in a two-dimensional electron gas with Rashbaspin-orbit interactions// Phys. Rev. B 2004. v.70. P.155308(8).43.J. B. Miller, D. M. Zumbuhl, C. M. Marcus, Y. B. Lyanda- Geller, D.Goldhaber-Gordon, K. Campman, and A. C. Gossard.
Gate-ControlledSpin-Orbit Quantum Interference Eects in Lateral Transport// Phys. Rev.Lett. 2003. v.90. P.076807(4).44.Qiuzi Li, E. H. Hwang, and S. Das Sarma. Collective modes of monolayer,bilayer, and multilayer fermionic dipolar liquid// Phys. Rev. B. 2011. v.82. P.235126(11).45.Kechedzhi K. and S. Das Sarma, Plasmon anomaly in the dynamical opticalconductivity of graphene// Phys. Rev. B. 2013. v.88. P.085403(12).46.S. Das Sarma and Qiuzi Li., Intrinsic plasmons in two-dimensional Diracmaterials// Phys. Rev. B.
2013. v.87. P.235418(19).47.E. H. Hwang and S. Das Sarma. Surface polar optical phonon interactioninduced many-body eects and hot-electron relaxation in graphene// Phys.Rev. B. 2013. v.87. P.115432(10).48.D. S. L. Abergel, R. Sensarma, and S. Das Sarma. Density uctuationeects on the exciton condensate in double-layer graphene// Phys. Rev.
B. 2012. v.86. P.161412(5).12949.S. Ospelkaus, K.-K. Ni, G. Qu em ener, B. Neyenhuis, D. Wang, M. H. G.de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, Controlling the HyperneState of Rovibronic Ground-State Polar Molecules// Phys. Rev. Lett. 2010. v.104. P. 030402.50.K.-K. Ni, S. Ospelkaus, D. J. Nesbitt, J. Ye, and D. S. Jin, Phys. Chem.Chem. Phys. 2009.
v.11. P. 9626.51.S. Das Sarma and A. Madhukar. Collective modes of spatially separated,two-component, two-dimensional plasma in solids// Phys. Rev. B. 1981. v.23. P.805815.52.Roman M. Lutchyn, Enrico Rossi, and S. Das Sarma. Spontaneousinterlayer superuidity in bilayer systems of cold polar molecules// Phys.Rev. A. 2010. v.82. P.061604(4).53.Micheli A. et al. Cold polar molecules in two-dimensional traps: Tailoringinteractions with external elds for novel quantum phases// Phys. Rev. A. 2007. v.76.
P.043604(4).54.Gorshkov A. V. et al. Suppression of Inelastic Collisions Between PolarMolecules With a Repulsive Shield// Phys. Rev. Lett. 2008. v.101. P.073201(4).55.Cooper N. R. and Shlyapnikov G. V. Stable Topological Superuid Phase ofUltracold Polar Fermionic Molecules// Phys. Rev. Lett. 2009. v.103.
P.155302(4).56.Wang D.-W., Lukin M. D., and Demler E. Quantum Fluids of SelfAssembled Chains of Polar Molecules// Phys. Rev. Lett. 2006. v.97. P.180413(4).57.Buchler H. P., Demler E., Lukin M., Micheli A., Prokof'ev N., Pupillo G.,and Zoller P. Strongly Correlated 2D Quantum Phases with Cold Polar130Molecules: Controlling the Shape of the Interaction Potential// Phys. Rev.Lett. 2007. v.98.
P.060404(4).58.Ching-Kit Chan, Congjun Wu, Wei-cheng Lee, S. Das Sarma. AnisotropicFermi-liquid theory of ultracold fermionic polar molecules: Landauparameters and collective modes// Phys. Rev. A. 2010. v.81. P.023602(16).59.S. Ronen and J. Bohn, Zero sound in dipolar Fermi gases // Phys. Rev.A. - 2010. v.81. - P. 033601.60.Uwe R.
Fischer. Stability of quasi-two-dimensional Bose-Einsteincondensates with dominant dipole-dipole interactions// Phys. Rev. A. 2006. v.73. P. 031602(R).61.S. Yi and L. You. Phys. Rev. A. 2000. v.61. P.041604(4). Trappedatomic condensates with anisotropic interactions//62.S.
Kotochigova, P. S. Julienne, and E. Tiesinga, Phys. Rev. A. 2003. v.68. P.022501(4).63.L. Santos, G. V. Shlyapnikov, and M. Lewenstein. Roton-Maxon Spectrumand Stability of Trapped Dipolar Bose-Einstein Condensates// Phys. Rev.Lett. 2003. v.90. P.250403(4).64.J. Armaitis, R. A. Duine, and H. T. C. Stoof. Quantum Rotor Model for aBose-Einstein Condensate of Dipolar Molecules// Phys. Rev.
Lett. 2013. v.111. P.215301(5)65.Ronen Rapaport, Gang Chen, Steven Simon, Oleg Mitrofanov, LorenPfeier, and P. M. Platzman. Electrostatic traps for dipolar excitons//Phys. Rev. B. 2005. v.72. P.075428(5).66.L. Santos, G.V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose-EinsteinCondensation in Trapped Dipolar Gases// Phys. Rev. Lett.
2000. v.85. P.17911794.13167.S. Yi and L. You, Trapped condensates of atoms with dipole interactions//Phys. Rev. A. 2001. v.63. P.053607(14).68.K. Goral and L. Santos, Ground state and elementary excitations of singleand binary Bose-Einstein condensates of trapped dipolar gases// Phys.Rev. A. 2002. v.66. P.023613(12).69.Yongyong Cai, Matthias Rosenkranz, Zhen Lei, and Weizhu Bao, Meaneld regime of trapped dipolar Bose-Einstein condensates in one and twodimensions// Phys. Rev.
A. 2010. v.82. P.043623(10).70.I. Sapina, T. Dahm, and N. Schopohl, Ground-state and collective modesof a spin-polarized dipolar Bose-Einstein condensate in a harmonic trap//Phys. Rev. A. 2010. v.82. P.053620(25).71.T. F. Jiang and W. C. Su, Ground state of the dipolar Bose-Einsteincondensate// Phys. Rev. A. 2006. v.74. P.063602(6).72.Y.
Yamaguchi, T. Sogo, T. Ito, and T. Miyakawa, Density-wave instabilityin a two-dimensional dipolar Fermi gas// Phys. Rev. A. 2010. v.82. P.013643(7).73.T. Miyakawa, T. Sogo, and H. Pu, Phase-space deformation of a trappeddipolar Fermi gas// Phys. Rev. A. 2008. v.77. P.061603(4).74.J. P. Morrison, C. J. Rennick, J. S.
Keller, E. R. Grant. Evolution froma Molecular Rydberg Gas to an Ultracold Plasma in a Seeded SupersonicExpansion of NO// Phys. Rev. Lett. 2008. v.101. P.205005(4).75.M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gal- lagher, and P. Pillet,Spontaneous Evolution of Rydberg Atoms into an Ultracold Plasma//Phys. Rev. Lett. 2000. v.85. P.44664469.76.E. A. Cummings, J. E.
Daily, D. S. Durfee, and S. D. Bergeson, Ultracoldneutral plasma expansion in two dimensions // Phys. Plasmas. 2005. v.12. P.123501(5).13277.W. Li, P. J. Tanner, and T. F. Gallagher, Dipole-Dipole Excitation andIonization in an Ultracold Gas of Rydberg Atoms// Phys. Rev. Lett. 2005. v.94. P.173001(4).78.Yasuyuki Kimura. Electric-eld-induced resonances of highly excitedmolecules// Phys. Rev. A. 2009. v.79. P.043412(6).79.Motomichi Tashiro. Application of the R-matrix method to photoionizationof molecules// J. Chem.
Phys. 2010. 132. P.134306.80.N. Saquet, J. P. Morrison, M. Schulz-Weiling, H. Sadeghi, J. Yiu, C. J.Rennick, E. R. Grant, On the formation and decay of a molecular ultracoldplasma// arXiv:1103.0053v1. 2011.81.C. J. Rennick, J. P. Morrison, J. Ortega-Arroyo, P. J. Godin, N. Saquet,E. R. Grant, Charge, density and electron temperature in a molecularultracold plasma// arXiv:0911.0466v2.















