Диссертация (1103504), страница 15
Текст из файла (страница 15)
G. Sudarshan // Phys. Rev. Lett.– 1963. – V. 10. – P. 277–279.[101] Suresh, P. K. Squeezed states, black holes and entropy generation / P. K.Suresh, V. C. Kuriakose // Mod. Phys. Lett. A. – 1997. – V. 12. – P. 14351445.[102] Tlyachev, T. V. A new approach to quantum theory of multimode coupledparametric processes / T. V. Tlyachev, A. M. Chebotarev, A. S. Chirkin //Physica Scripta – 2013. – V. T153. – 014060.[103] Tlyachev, T.
V. Canonical transformations and multipartite coupledparametric processes / T. V. Tlyachev, A. M. Chebotarev, A. S. Chirkin //Physica Scripta – 2014. – V. T160. – 014041.[104] Walls, D. F. Quantum optics / D. F. Walls, G. J. Milburn. – Berlin: Springer,2008. – 425 p.[105] Walls, D. F. Squeezed states of light / D. F. Walls // Nature – 1983. – V.
306.– P. 141 - 146.[106] Wei, J. Lie algebraic solution of linear differential equations / J. Wei, E.Norman // J. Math. Phys. – 1963. – V. 4. – P. 575-581.[107] Wei, J. On global representations of the solutions of linear differentialequations as a product of exponentials / J. Wei, E. Norman // Proc. Amer.Math. Soc. – 1964. – V. 15. – P. 327-334.[108] Werner, R.
F. Bound entangled Gaussian states / R. F. Werner, M. M. Wolf// Phys. Rev. Lett. – 2001. – V. 86. – P. 3658–3661.[109] Wigner, E. P. On the quantum correction for thermodynamic equilibrium /E. P. Wigner // Phys. Rev. – 1932. – V. 40. – P. 749–759.[110] Wilcox, R. M. Exponential operators and parameter differentiation in quantumphysics / R. M. Wilcox // J. Math. Phys. – 1967. – V. 8. – P.
962-982.[111] Wilde, М. Quantum Information Theory / М. Wilde –Cambridge UniversityPress, 2013. – 655 p.102[112] Williamson, J. On the algebraic problem concerning the normal forms of lineardynamical systems / J. Williamson // Am. J. Math. – 1936. – P. 141-163.[113] Wiseman, H. M. Quantum measurement and control / H.
M. Wiseman, G.J.Milburn. – Cambridge: Cambridge University Press, 2010. – 460 p.[114] Wu, L. A. Generation of squeezed states by parametric down conversion / L.A. Wu, H. J. Kimble, J. L. Hall, H. Wu // Phys. Rev. Lett. – 1986. – V. 57. –P. 2520-2523.[115] Quantum information with continuous variables of atoms and light//Eds. Cerf N.J., Leuchs G. and Polzik E.S. 2007 (Imperial College Press, London,2007)[116] http://reference.wolfram.com/mathematica/tutorial/FunctionsThatDoNotHaveUniqueValues.html[117] http://statphys.nm.ru/biblioteka/Demo/FactorS.nb103.















