Диссертация (1103504), страница 14
Текст из файла (страница 14)
–P. 447–451.[48] D’Ariano, G. Squeezing versus photon-number fluctuations / G. D’Ariano etal. // Phys. Rev. D – 1987. – V.36 – P. 2399–2407.[49] Dodonov, V. V. Integrals of the motion, green functions, and coherent states ofdynamical systems/ V. V. Dodonov, I. A. Malkin, V. I. Man’ko // InternationalJournal of Theoretical Physics – 1975. – V.
14. – P. 37-54[50] Dodonov, V. V. ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review ofthe first 75 years / V. V. Dodonov // J. Opt. B: Quantum Semiclass. Opt. –2002. – V. 4 – P. R1–R33.[51] Dodonov, V. V. Squeezed states and uncertainty relations since 1991 / V. V.Dodonov, M. A. Man’ko, V. I. Man’ko // J. Rus. Laser Reseach – 2007. – V.28 – P.
404-428.[52] Dong, Yu. Possibility of efficient generation of multiphoton entangled statesusing a one-dimensional nonlinear photonic crystal / Yu. Dong, X. Zhang //Phys. Rev. A – 2010. – V. 81. – P. 033806-033814.97[53] Fan, H.-Y. New approach for calculating the normally ordered form of squeezeoperators / H.-Y. Fan, H. R.
Zaidi, J. R. Klauder // Phys. Rev. D – 1987. –V. 35. – P. 4-8.[54] Fan, H.-Y. Operator ordering in quantum optics theory and the development ofDirac’s symbolic method / H.-Y. Fan // J. Opt. B: Quantum Semiclass. Opt.– 2003. – V. 5. – P. R147.[55] Fan, H.-Y.
Representations of two-mode squeezing transformations / H.-Y. Fan,Y. Fan // Phys. Rev. A – 1996. – V. 54. – P. 958-960.[56] Fan, H.-Y. Squeeze operator and the single-complex-variable representation intwo-mode fock space / H.-Y. Fan // Phys. Lett. A – 1987. – V.
129. – P.1831-1834.[57] Farley, A. N. St. J. Coherent and squeezed states in black-hole evaporation /A. N. St. J. Farley, P. D. D’Eath // Physics Letters B. – 2006. – V. 634. –P. 419-426.[58] Ferraro, A. S. Gaussian states in quantum information / A. Ferraro, S. Olivares,M.G.A.
Paris. – Naples: BIBLIOPOLIS, 2005. – 146 p.[59] Ferraro, A. Three-mode entanglement by interlinked nonlinear interactions inoptical χ(2) media / A. Ferraro et al. // JOSA B – 2004. – V. 21. – P. 1241-1249.[60] Feynman, R. P. An operator calculus having applications in quantumelectrodynamics / R. P. Feynman // Phys. Rev. – 1951. – V. 84 – P. 108-128.[61] Friedrichs, K. O. Mathematical Aspects of the Quantum Theory of Fields / K.O. Friedrichs. – New York: Wiley (Interscience), 1953. – 272 p.[62] Furusawa, A.
Quantum teleportation and entanglement / A. Furusawa, P. vanLoock. – Weinheim: WILEY-VCH Verlag, 2011. – 352 p.[63] Giedke, G. Distillability criterion for all bipartite gaussian states / G. Giedke,L.-M. Duan, I. Cirac, P. Zoller // Quantum Information and Computation –2001. – V.
1. – P. 79-86.98[64] Giedke, G. Entanglement of formation for symmetric Gaussian states / G.Giedke, M.M. Wolf, O. Krüger, R.F. Werner, J. I. Cirac // Phys. Re. Lett.– 2003. – V. 91. – P. 107901-107904.[65] Glauber, R. J. Coherent and incoherent states of radiation field / R. J. Glauber// Phys. Rev. – 1963. – V. 131 – P. 2766-2788.[66] Hahn, T. Routines for the diagonalization of complex matrices / T. Hahn //arXiv:physics.comp-ph/0607103v2 – 2007[67] Hillery, M.
Path-integral approach to problems in quantum optics / M. Hillery,M. S. Zubairy // Phys. Rev. A – 1982. – V. 26 – P. 451–460.[68] Holevo, A. S. The capacity of quantum Gaussian channels / A. S. Holevo,M. Sohma, O. Hirota // Phys. Rev.
A – 1999. – V. 59. – P. 1820–1828.[69] Hollenhorst, J. N. Quantum limits on resonant-mass gravitational-radiationdetectors/ J. N. Hollenhorst // Phys. Rev. D – 1981. – V. 23 –P. 1693-1708.[70] Horn, R. A. Matrix Analysis / R. A. Horn, C.
R. Johnson. – New York:Cambridge Univ. Press, 1985. – 561 p.[71] Horodecki, M. Separability of mixed states: necessary and sufficient conditions/ M. Horodecki, P. Horodecki, R. Horodecki // Phys. Lett. A – 1996. – V. 223.– P. 1-8.[72] Horodecki P.
Separability criterion and inseparable mixed states with positivepartial transposition / P. Horodecki // Phys. Lett. A – 1997. – V. 232. – P.333-339.[73] Horodecki, M. Quantum state merging and negative information / M.Horodecki, J. Oppenheim, A. Winter, // Communications of MathematicalPhysics. – 2005. – V. 269.
– P. 107-136.[74] Hu, B. L. Squeezed vacua and the quantum statistics of cosmological particlecreation / B. L. Hu, G. Kang, A. Matacz // Int. J. Mod. Phys. A – 1994. – V.9. – P. 991-1008.[75] Huang, H. General linear transformation and entangled states / H. Huang, G.S. Agarwal // Phys. Rev.
A – 1994. – V. 49 – P. 52-60.99[76] Kittel, C. Quantum theory of solids / C. Kittel. – New York: John Wiley andSons, 1987. – 528 p.[77] Klauder, J. R. Continuous Representation Theory. II. Generalized Relationbetween Quantum and Classical Dynamics / J. R. Klauder // J. Math. Phys.– 1963. – V.
4. – P. 1058-1074.[78] Klauder, J. R. The action option and a Feynman quantization of spinor fieldsin terms of ordinary c-numbers / J. R. Klauder // Annals of Physics – 1960. –V. 11. – P. 123-168.[79] Kleinman, D. A. Theory of Optical Parametric Noise / D. A. Kleinman //Phys. Rev. – 1968. – V. 174. – P. 1027–1041.[80] Levenson, M. D. Generation and detection of squeezed states of light bynondegenerate four-wave mixing in an optical fiber / M. D. Levenson et al.// Phys. Rev.
A. – 1985. – V. 32. – P. 1550-1562.[81] Liang, X. Creating multimode squeezed states and Greenberger-Horne-Zeilingerentangled states using atomic coherent effects / X. Liang, X. Hu, and C. He //Phys. Rev. A. – 2012. – V.85. – P. 032329.[82] Lieb, E. Two solvable models of an antiferromagnetic chain / E.
Lieb, T. Schultz,D. Mattis // Ann. of Phys. – 1961. – V. 16. – P. 407- 466.[83] Lo, C. F. Generalized multimode squeezed states / C. F. Lo, R. Sollie // Phys.Rev. A. – 1993. – V. 47. – P. 733-735.[84] Ma, X. Multimode squeeze operators and squeezed states / X. Ma, W. Rhodes// Phys.Rev. A. – 1990. – V. 41. – P. 4625-4631.[85] Maimistov, A.I. Nonlinear Optical Waves / A.I. Maimistov, A. M. Basharov –Berlin: Springer-Verlag, 1999. – 650 p.[86] Mancini, S. The Quantum Separability Problem for Gaussian States/ Mancini,S.
Severini S. // Electronic Notes in Theoretical Computer Science – 2007. –V. 169. – P. 121-131.[87] Man’ko, O. V. Partial positive scaling transform: a separability criterion /O. V. Man’ko et al. // Phys. Lett. A – 2005. – V. 339. – P. 194-206.100[88] Maurice A. de Gosson, Symplectic Geometry and Quantum Mechanics /Maurice A. de Gosson. – Basel: Birkhauser, 2006. – 392 p.[89] Milburn, G. J. Multimode minimum uncertainty squeezed states / G. J. Milburn// J. Phys. A – 1984. – V. 17. – P.
737-745.[90] Moler, C. Nineteen dubious ways to compute the exponential of a matrix,twenty-five years later / C. Moler, C. Van Loan // SIAM Rev. – 2003. – V. 45.– P. 3–49.[91] Mollow, B. R. Photon Correlations in the Parametric Frequency Splitting ofLight / B. R. Mollow // Phys. Rev. A – 1973. – V. 8 – P. 2684-2694.[92] Moyal, J. Quantum mechanics as a statistical theory / J. Moyal // Proc.Cambridge Phil. Soc.
– 1949. – V. 45 – P. 99–124.[93] Najfeld, I. Derivatives of the matrix exponential and their computation /I. Najfeld, T.F. Havel // Advances in Applied Mathematics – 1995 – V. 16. –P. 321–375.[94] Peres A. Separability criterion for density matrices / A. Peres // Phys. Rev.Lett. – 1996. – V. 77. – P. 1413–1415.[95] Puri, R. R.
Mathematical methods of quantum optics / R. R. Puri. – Berlin:Springer, 2001. – 285 p.[96] Shumaker, B. L. New formalism for two-photon quantum optics. II.Mathematical foundation and compact notation / B. L. Shumaker, C. M. Caves// Phys. Rev. A – 1985. – V. 31. – P. 3093-3111.[97] Simon R.
Peres-Horodecki separability criterion for continuous variable systems/ R. Simon // Phys. Rev. Lett. – 2000. – V. 84. – P. 2726-2729.[98] Simon R. Quantum-noise matrix for multimode systems: U (n) invariance,squeezing, and normal forms / R. Simon, N. Mukunda, B. Dutta // Phys.Rev. A – 1994.
– V. 49. – 1567.[99] Slusher, R.E. Observation of squeezed states generated by four-wave mixing ina optical cavity / R. E. Slusher // Phys. Rev. Lett. – 1985. – V. 55. – P. 24092416.101[100] Sudarshan, E. C. G. Equivalence of semiclassical and quantum mechanicaldescriptions of statistical light beams / E. C.















