Диссертация (1103233), страница 20
Текст из файла (страница 20)
Heat capacity of silicon in the range 350–770 KGlazov V., Pashinkin A.,Mikhailova M. // Scandinavian journal of metallurgy – 2001 – т.30. – с.388-390.65. Experimental evaluation of procedures for heat capacity measurement bydifferential scanning calorimetry / Ramakumar K., Saxena M., Deb S. // Journal ofThermal Analysis and Calorimetry – 2001 – т.66 – с.387-397.66. Mathot V. Calorimetry and Thermal Analysis on Polymers // Carl Hanser VerlangGmbH & Co – 1994 – с.40-41.67.
Crystal forms in cold-crystallized syndiotactic polystyrene / Sen Sun, Woo E. M.// Macromolecules – 1999 – т.32(23) – с.7836-7844.68. Multiple melting behavior in isothermally crystallized poly(trimethyleneterephthalate) / Srimoaon P., Dangseeyun N., Supaphol P. // European PolymerJournal – 2004 – т.40 – с.599-608.69. Condensed matterToo hot to melt / Lindsay G.A.
// Nature – 2000 – c.134-135.70. Thermal oscillations in lamps of thin fibers with alternating current flowingthrough them and the resulting effect on the rectifier as a result of the presence ofeven-numbered harmonics / Corbino O. // Physikalische Zeitschrift – 1910 – т.11– с. 413-417.71. Size-dependent melting point depression of nanostructures: nanocalorimetricmeasurements / Zhang M., Efremov M., Schiettekatte F., Olson E., Kwan A., LaiS., Wisleder T., Greene J., Allen L. // Physical Review B – 2000 – т.62 – с.10548.72.
Real-time heat capacity measurement during thin-film deposition by scanningnanocalorimetry / Zhang M., Efremov M., Olson E., Zhang Z., Allen L. // AppliedPhysics Letters – 2002– т.81 – с.3801-3803.73. Nanoscale Calorimetry of Isolated Polyethylene Single Crystals / Kwan A.,Efremov M., Olson E., Schiettekatte F., Zhang M., Geil P., Allen L.
// Journal ofPolymer Science Part B: Polymer Physics – 2001 – т.39 – с.1237-1245.74. Thermodynamic modeling of the Fe-Mg-Si system / Zhang J., Zhao Y. // Nature.2004 – т.403 – с.332-334.75. Amorphous linear polyethylene: Electron diffraction, morphology, and thermalanalysis. / Jones J., Barenberg S., Geil P. // Polymer – 1979 – т.20 – с.903-916.76. Photoluminescence properties of alxga1 - xas epitaxial layers grown underconditions of ultrafast flux cooling / Abramov A., Deryagin N., Tret'yakov D.
//Semiconductor science and technology – 1996 – т.11. – с.607.77. Ultrafast thermal processing and nanocalorimetry at heating and cooling rates upto 1 MK/s / Minakov A.A., Schick C. // Review of Scientific Instruments – 2007 –т.78. – 073902–073902.13178.Combining Fast Scanning Chip Calorimetry with Structural and MorphologicalCharacterization Techniques / Mathot V., Pyda M., Pijpers T., Poel G., Van deKerkhof E., Van Herwaarden S.
// Thermochimica Acta – 2011 – т.522 – с.36-45.79. Официальный сайт Европейского центра синхротронного излучения[Электронный ресурс] [2016]. URL: www.esrf.eu80. Rosenthal M., Melnikov A.P., Rychkov A.A., Doblas D., Anokhin D.V.,Burghammer M., Ivanov D.A. Chapter 9 in Fast scanning calorimetry //Springer –2016.81. Nanocalorimetry in mass spectrometry: A route to understanding ion and electronsolvation / Donald W.
A., Leib R. D., O'Brien J. T., Holm P. // Proceedings of theNational Academy of Sciences – 2008 – т.105(47) – с.18102.82. In Situ Transmission Electron Microscopy Investigation of the InterfacialReaction between Ni and Al during Rapid Heating / Grapes M.D., LaGrange T.,Woll K., Reed B.W., Campbell G.H., LaVan D.A., Weihs T.P. // APL Materials –2014 – т.11(2) – с.116102.83.
Apparatus to measure wafer curvature for multilayer systems in a vacuum furnace/ Grapes M., LaGrange T., Friedman L., Reed B., Campbell G., Weihs T., LaVanD. // Review of Scientific Instruments – 2014 – т.85 – с.084902.84. Application of in-situ nano-scanning calorimetry and X-ray diffraction tocharacterize Ni–Ti–Hf high-temperature shape memory alloys / McCluskey P.,Xiao K., Gregoire J., Dale D., Vlassak J.J.
// Thermochimica Acta – 2015 – т.603.85. Scanning AC nanocalorimetry combined with in-situ x-ray diffraction / Xiao K.C., Gregoire J. M., McCluskey P. J., Dale D., Vlassak J. J. // Journal of AppliedPhysics – 2013 – т.113(24).86. In-situ X-ray diffraction combined with scanning AC nanocalorimetry applied toa Fe0.
84Ni0. 16 thin-film sample / Gregoire J. M., Xiao K. C., McCluskey P. J.,Dale D., Cuddalorepatta G., Vlassak J.J. // Applied Physics Letters – 2013 – т.102(20).87. Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanningchip calorimeter / van Drongelen M., Meijer-Vissers T., Cavallo D., Portale G.,Androsch R.
// Thermochimica Acta – 2013 – т.563(33).88. Characterization of explosives traces by the Nanocalorimetry / Piazzon N.,Rosenthal M., Bondar A., Spitzer D., Ivanov D.A. // Journal of Physics andChemistry of Solids – 2010 – т.71 – с.740.89. High-resolution thermal imaging with a combination of nano-focus X-raydiffraction and ultra-fast chip calorimetry / Rosenthal M., Doblas D., HernandezJ.J., Odarchenko Y.I., Burghammer M., Di Cola E., Spitzer D., Antipov A.E.,Aldoshin A.L., Ivanov D.A. // Journal of Synchrotron Radiation – 2014 – т.21 –с.223.90. High temporal resolution nanocalorimetry and its combination with micro- andnanofocus x-ray diffraction for study of fuctional nanostructured materials / A.
P.Melnikov et al. // Nanoindustry – 2016 – т.8 – с. 60-66.91. Design of a combined setup for simultaneous measurements of the microstructuraland thermo-analytical parameters of nanogram-size samples / A. P. Melnikov et al.// Applied Mechanics and Materials. – 2015 – т. 788 – с. 136–142.13292. British patent – 1964 – c.578,079.93. Crystallization kinetics of poly(trimethylene terephthalate) / Chuan H.H.
//Polymer Engineering & Science – 2001 – т.41 – с.308.94. Glass transition and melting behavior of poly (oxy-1, 4-phenyleneoxy-1, 4phenylenecarbonyl-1, 4-phenylene)(PEEK) / Cheng S.Z.D., Wunderlich B. //Macromolecules – 1968 – т.19 – с.1868.95. Glass transition and melting behavior of poly (ethylene 2, 6naphthalenedicarboxylate) / Cheng S.Z.D. // Macromolecular Chemistry andPhysics – 1988 – т.36 – с.2499.96.
Heat capacity of poly(trimethylene terephthalate) / Puda M. // Journal of PolymerScience Part B: Polymer Physics – 1998 – т.36 – с.2499.97. Crystallization kinetics and morphology of poly (trimethylene terephthalate) /Hong P.-D. // Polymer – 2002 – т.43 – с.3335.98. Multiple melting behavior in isothermally crystallized poly(trimethyleneterephthalate) / Suppaphol P. // European Polymer Journal – 2003 – т.40 – с.599.99.
Crystallization temperature dependence of interference color and morphology inpoly(trimethylene terephthalate) spherulite / Kuboyama K. // Polymer – 2006 – т.47 – с.1715.100.Alternating-layered spherulites in thin-film poly(trimethylene terephthalate)by stepwise crystallization schemes / Woo E. M.
// Materials Letters – 2007 – т.61– с. 4911.101.Exploring the melting of a semirigid-chain polymer with temperatureresolved small-angle X-ray scattering / Ivanov D.A., Hocquet S., Dosiére M., KocM. H. J. // The European Physical Journal – 2004 – т.13 – с.363.102.Non-adiabatic thin-film (chip) nanocalorimetry / Minakov A.A.,Adamovsky S.A., Schick C. // Thermochimica Acta – 2005 – т.432 – с.177 – 185.103.A novel view on crystallization and melting of semirigid chain polymers:The case of poly(trimethylene terephthalate). / Ivanov D.A., Bar G., Dosiere M.,Koch M.H.J.
// Macromolecules – 2008 – т.41. – с. 9224-9233.104.Real-time evolution of the lamellar organization of poly(ethyleneterephthalate) during crystallization from the melt: High-temperature atomic forcemicroscopy study / Ivanov D.A., Amalou Z., Magonov S. N. // Macromolecules. –2001 – т.34 – с.8944.105.Evolution of the lamellar structure during crystallization of asemicrystalline-amorphous polymer blend: Time-resolved hot-stage SPM study.
/Ivanov D.A., Legras R., Jonas A.M. // Polymer – 2000 – т.41. – с.3719.106.Atomic force microscopy imaging of single polymer spherulites duringcrystallization: application to a semi-crystalline blend / Ivanov D.A., Nysten B.,Jonas A. M. // Polymer – 1999 – т.40 – с.5899.107.Recent developments in thermal analysis of polymers: Calorimetry in thelimit of slow and fast heating rates (pages 629–636) / Cebe P. // Journal of polymerscience: Part B: Polymer physics – 2005 – т.43 – с.629.108.Experimental determination of the nucleation rates of undercooled micronsized liquid droplets based on fast chip calorimetry / Simon C., Peterlechner M.,Wilde G. // Thermochimica Acta – 2015 – т.603 – с.39.133109.Double-melting behavior of poly(ether ether ketone).















