Диссертация (1102730), страница 12
Текст из файла (страница 12)
A 75, 062111 (2007);99[16] Su W.P., Schrieffer J.R., Heeger A.J. Solitons in polyacetylene //Phys. Rev. Lett. 42, 1698 (1979);[17] Novoselov K.S., Geim A.K. et al. Electric field effect in atomicallythin carbon films // Science 306, 666 (2004);[18] Katsnelson M.I. Graphene: carbon in two dimensions // Mater.Today 10, 20 (2007);[19] Geim A.K. Graphene: status and prospects // Science 324, 1530(2009);[20] Novoselov K.S., Geim A.K.
et al. Two-dimensional gas of masslessDirac fermions in graphene. // Nature 438, 197 (2005);[21] Castro Neto A.H., Guinea F. et al. The electronic properties ofgraphene // Rev. Mod. Phys. 81, 109 (2009);[22] Zhang Y. et al. Experimental observation of the quantum Halleffect and Berry’s phase in graphene // Nature 438, 201 (2005);[23] Novoselov K.S., Jiang Z. et al. Room-temperature quantum Halleffect in graphene // Science 315, 1379 (2007);[24] Wallace P.R.
The band theory of graphite // Phys. Rev. 71, 622(1947);[25] Semenoff G.W.Condensed-matter simulation of a three-dimensional anomaly // Phys. Rev. Lett. 53, 2449 (1984);[26] Gusynin V.P., Sharapov S.G., Carbotte J.P. AC conductivity ofgraphene: from tight-binding model to 2+1-dimensional quantumelectrodynamics // Int. J. Mod.
Phys. B 21, 4611 (2007);100[27] Castro Neto A.H.Selected topics in graphene physics //arXiv:1004.3682 [cond-mat.mtrl-sci];[28] Gross D., Neveu A.Dynamical symmetry breaking inasymptotically free field theories // Phys. Rev. D 10, 3235 (1974);[29] Nambu Y., Jona-Lasinio G.Dynamical model of elementaryparticles based on an analogy with superconductivity // Phys.Rev. 122, 345 (1961);[30] Klimenko K.G.
Phase structure of generalized Gross-Neveu models// Z. Phys. C 37, 457 (1988);[31] Rosenstein B., Warr B.J., Park S.H. Thermodynamics of (2+1)dimensional four-fermion models // Phys. Rev. D 39, 3088 (1989);[32] Ebert D., Volkov M.K.QCD-motivated Nambu-Jona-Lasiniomodel with quark and gluon condensates // Phys. Lett. B 272,86 (1991);[33] Caldas H., Rudnei O. RamosMagnetization of Planar Four-Fermion Systems // Phys. Rev. B 80, 115428 (2009);[34] Drut J.E., Son D.T.Renormalization group flow of quarticperturbations in graphene: Strong coupling and large-N limits //Phys.
Rev. B 77, 075115 (2008);[35] Caldas H. Asymmetrically doped polyacetylene // Nucl. Phys. B807, 651 (2009);[36] Fernando de Juan, Cortijo A., Vozmediano M.A.H.101Chargeinhomogeneities due to smooth ripples in graphene sheets // Phys.Rev. B 76, 165409 (2007);[37] Vozmediano M.A.H., Katsnelson M.I., Guinea F. Gauge fields ingraphene // Physics Reports 496, 109 (2010);[38] Gonzalez J., Guinea F., Vozmediano M.A.H.The electronicspectrum of fullerenes from the Dirac equation // Nucl. Phys. B406, 771 (1993);[39] Gamayun A.V., Gorbar E.V. Dynamical symmetry breaking on acylinder in magnetic field // Phys.
Lett. B 610, 74 (2005);[40] Ferrer E.J., Vivian de la Incera Photons and fermions in spacetimewith a compactified spatial dimension // arXiv:hep-ph/0408229;[41] Song D.Y. Four-fermion interaction model on R2 ×S 1: A dynamicaldimensional reduction // Phys. Rev. D 48, 3925 (1993);[42] Sitenko Yu.A. Induced vacuum condensates in the background of asingular magnetic vortex in 2+1-dimensional space-time // Phys.Rev. D 60, 125017 (1999);[43] Aharonov Y., Bohm D. Significance of electromagnetic potentialsin the quantum theory // Phys. Rev. 115, 485 (1959);[44] Kadyshevskii V.G., Rodionov V.N. Polarization of the ElectronPositron Vacuum by a Strong Magnetic Field in the Theory witha Fundamental Mass // Theor.
Math. Phys. 136, 517 (2003);[45] Jackiw R., Milstein A.I. et al. Induced Current and AharonovBohm Effect in Graphene // Phys. Rev. B 80, 033413 (2009);102[46] Bietenholz W., Gfeller A., Wiese U.J. Dimensional reduction offermions in brane worlds of the Gross-Neveu model // JHEP 10,018 (2003);[47] Coleman S., Weinberg E. Radiative Corrections as the Origin ofSpontaneous Symmetry Breaking // Phys. Rev. D 7 (1888);[48] Abe H., Miguchi H., Muta T.
Dynamical fermion masses under theinfluence of Kaluza–Klein fermions in extra dimensions // Mod.Phys. Lett. A 15, 445 (2000);[49] Dienes K.R., Dudas E., Gherghetta T. Light neutrinos withoutheavy mass scales: A higher-dimensional seesaw mechanism //Nucl. Phys. B 557, 25 (1999);[50] Пронин П.И., Смирнов Н.Э. Исследование эффектов взаимодействия электромагнитного поля со структурными неоднородностями твердого тела методами дифференциальной геометрии и теории калибровочных полей // Физическая мысльРоссии 3/4, 17 (1996);[51] Мусиенко А.И., Копцик В.А.
Калибровочная теория дислокаций и деклинаций в кристаллах с многоатомными решетками// Кристаллография 41, 586 (1996);[52] Nair R.R., Sepioni M. et al. Spin-half paramagnetism in grapheneinduced by point defects // Nature Physics 8, 199 (2012);[53] Castro Neto A.H., Guinea F. et al. The electronic properties ofgraphene // Rev.
Mod. Phys. 81, 109 (2009);103[54] Lahiri J., Lin Y. et al. An extended defect in graphene as a metallicwire // Nat. Nanotech. 5, 326 (2010);[55] Jiang L., Lv X., Zheng Y. Valley polarized electronic transportthrough a line defect in graphene: An analytical approach basedon tight-binding model // Phys. Lett.
A 376, 136 (2011);[56] Lopez-Sancho M.P., Fernando de Juan, Vozmediano M.A.H.Magnetic moments in the presence of topological defects ingraphene // Phys. Rev. B 79, 075413 (2009);[57] Ebert D., Zhukovsky V.Ch., Stepanov E.A. Pseudopotential modelfor Dirac electrons in graphene with line defects // J. Phys.:Condens. Matter 26, 125502 (2014);[58] Hosotani Y.Dynamical mass generation by compact extradimensions // Phys.
Lett. B 126, 309 (1983);[59] Ebert D., Zhukovsky V.Ch., Tyukov A.V. Dynamical fermionmasses under the influence of Kaluza-Klein fermions and a bulkabelian gauge field // Mod. Phys. Lett. A 25, 2933 (2010);[60] Zhukovsky V.Ch., Stepanov E.A. Effective (2+1)-dimensional fieldtheory of fermions: fermion mass generation with Kaluza–Kleinfermions and gauge field // Phys. Lett. B 718, 597 (2012);[61] Волобуев И.П., Кадышевский В.Г. и др. Уравнения движения для скалярного и спинорного полей в четырехмерном неевклидовом импульсном пространстве // Теор. и Мат. физ. 40, 3(1979);104[62] Жуковский В.Ч., Степанов Е.А.
Генерации фермионной массы с участием Калуца-Клейновских фермионов под влияниемкалибровочного поля в модели с 2+1 измерениями // ВестникМГУ, Серия 3, №1, 58 (2012);[63] Chambers R.G.Shift of an electron interference pattern byenclosed magnetic flux // Phys. Rev.
Lett. 5, 3 (1960);[64] Osakabe N., Matsuda T. et al. Experimental confirmation ofAharonov-Bohm effect using a toroidal magnetic field confined bya superconductor // Phys. Rev. A 34, 815 (1986);[65] Ferrer E.J., de la Incera V., Romeo A. Photon propagation inspace–time with a compactified spatial dimension // Phys. Lett.B 515, 341 (2001);[66] Жуковский В.Ч., Степанов Е.А. Индуцированный ток и прохождение через барьер в четырехфермионной модели с 2+1измерениями // Вестник МГУ, Серия3, №2, 36 (2014);[67] Zhao L., He R., et al. Visualizing individual nitrogen dopants inmonolayer graphene // Science 333, 999 (2011);[68] Ribeiro R.M., Peres N.M.R. et al.Inducing energy gaps inmonolayer and bilayer graphene: Local density approximationcalculations // Phys.
Rev. B 78, 075442 (2008);[69] Giovannetti G., Khomyakov P.A. et al. Substrate-induced bandgap in graphene on hexagonal boron nitride: Ab initio densityfunctional calculations // Phys. Rev. B 76, 73103 (2007);105[70] Jackiw R., Pi S.-Y. Chiral Gauge Theory for Graphene // Phys.Rev. Lett. 98, 26402 (2007);[71] Chamon C., Hou C.-Yu et al. Irrational Versus Rational Chargeand Statistics in Two-Dimensional Quantum Systems // Phys.Rev. Lett. 100, 110405 (2008);[72] Chamon C., Hou C.-Yu et al.
Electron fractionalization for twodimensional Dirac fermions // Phys. Rev. B 77, 235431 (2008);[73] Obispo A.E., Hott M. Fractional fermion charges induced byvector-axial and vector gauge potentials in planar graphene-likestructures // arXiv:1206.0289 [hep-th];[74] Huang P.Y., Ruiz-Vargas C.S. et al. Grains and grain boundariesin single-layer graphene atomic patchwork quilts // Nature 469,389 (2011);[75] Ori O., Cataldo F., Putz M.V. Topological anisotropy of StoneWales waves in graphenic fragments // Int. J.
Mol. Sci. 12, 7934(2011);[76] Guinea F., Horovitz B., Le Doussal P. Gauge field induced byripples in graphene // Phys. Rev. B 77, 205421 (2008);[77] Gomes J.V., Peres N.M.R. Tunneling of Dirac electrons throughspatial regions of finite mass // J. Phys.: Condens. Matter 20,325221 (2008);[78] Katsnelson M.I., Novoselov K.S., Geim A.K. Chiral tunnelling andthe Klein paradox in graphene // Nature Phys. 2, 620 (2006);106[79] Klein O. Die Reflexion von Elektronen an einem Potentialsprungnach der relativistischen Dynamik von Dirac // Z. Phys.
53, 157(1929);[80] Gunlycke D., White C.T. Graphene valley filter using a line defect// Phys. Rev. Lett. 106, 136806 (2011);[81] Xiao-Ling L., Zhe L. et al. Valley polarized electronic transmissionthrough a line defect superlattice of graphene // Phys. Rev. B 86,045410 (2012);[82] McKellar B.H.J., Stephenson Jr G.J. Relativistic quarks in onedimensional periodic structures // Phys. Rev. C 35, 2262 (1987);[83] McKellar B.H.J., Stephenson Jr G.J. Klein paradox and the DiracKronig-Penney model // Phys. Rev.
A 36, 2566 (1987);[84] Sutherland B., Mattis D.C. Ambiguities with the relativistic ffunction potential // Phys. Rev. A 24, 1194 (1981);[85] Dong S.-H., Ma Z.-Q. The (2+1) Dirac Equations with δ Potential// arXiv:quant-ph/0110158;[86] Falomir H., Pisani P.A.G. Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles // J. Phys.
A 34, 4143 (2001);[87] Loewe M., Marquez F., Zamora R. The cylindrical δ-potential andthe Dirac equation // J. Phys. A: Math. Theor. 45, 465303 (2012);[88] Gunlycke D., White C.T.Valley and spin polarization fromgraphene line defect scattering // J. Vac.
Sci. Technol. B 30,03D112 (2012);107.















