Применение малоглубинной электроразведки для изучения трехмерно неоднородных сред (1100333), страница 24
Текст из файла (страница 24)
Annals of Geophysics,45, 2002, p. 417–429.97.Drahor M.G., Göktürkler G., Berge M.A., Kurtulmus T.Ö., Tuna N. 3D resistivity imagingfrom an archaeological site in south-western Anatolia, Turkey: a case study. Near SurfaceGeophysics, 2007, p. 195-201.98.Ekinci Y. L., Kaya M. A. 3D resistivity imaging of buried tombs at the Parion necropolis(NW Turkey). Journal of the Balkan Geophysical Society, 2007, 10 (2): 1-8.99.Erokhin S.A., Modin I., Pavlova A., Kats M. Geophysical investigations of early middle-agesturkic fortresses. Procs. Near Surface 2012 – 18th European Meeting of Environmental andEngineering Geophysics, Paris, France, 3 – 5 September 2012.126100.
Gunther T., Rucker C. Boundless Electrical Resistivity Tomography BERT - the user tutorial.2011, 28 pp. http://www.resistivity.netIn-Ky Cho, Ik-Soo Ha, Ki-Seog Kim, Hee-Yoon Ahn,Seunghee Lee, Hye-Jin Kang. 3D effects on 2D resistivity monitoring in earth-fill dams. NearSurface Geophysics, 2014, Vol.12, No 1, p.73-81.101. Johansson B., Jones S., Dahlin T., Flyhammar P. Comparisons of 2D and 3D inverted resistivity data as well as of resistivity and ip surveys on a landfill. Procs. Near Surface 2007 –13th European Meeting of Environmental and Engineering Geophysics, Istanbul, Turkey, 3–5 September 2007.102. Lines L.R., Treitel S. Tutorial: a review of least-squares inversion and its application to geophysical problems.
Geophysical Prospecting, 32, 1984, p. 159-186.103. Loke M.H. Rapid 2-D Resistivity & IP inversion using the least-squares method, Tutorial:Geoelectrical Imaging 2-D and 3-D, 1996-2009, www.geoelectrical.com104. Loke M.H. Rapid 3-D Resistivity & IP inversion using the least-squares method, Tutorial:Geoelectrical Imaging 2-D and 3-D, 1996-2009, www.geoelectrical.com105.
Loke M.H., Barker R.D. Practical techniques for 3D resistivity surveys and data inversion.Geophysical Prospecting, 44, 1996, p. 499-523.106. Loke M.H., Barker R.D. Rapid least-squares inversion of apparent resistivity pseudosectionsusing a quasi-Newton method. Geophysical Prospecting, 1996, 44, p. 131-152.107. Loke M.H., Lane J.W. The use of constraints in 2D and 3D resistivity modeling. Procs.
8 thEEGS-ES Meeting, Portugal, September 2002, 4 p.108. Mauriello P., Monna D., Patella D. 3D geoelectric tomography and archaeological applications. Geophysical Prospecting, Vol. 46, N 5, 1998, p. 543–570.109. Modin I. N., Shevnin V. A., Pervago E. V., Ignatova I. D.
Vector measurements in resistivityprospecting. Report presented at EAEG 56th Annual Meeting, Vienna, Austria, 1994, 2 pp.110. Morelli A., Morelli G., Chiara P., Pacchini A., Fischanger F. Characterization of complex archaeological sites using 3D electrical resistivity tomography. 17th EEGS Symposium on theApplication of Geophysics to Engineering and Environmental Problems, 2004, 8 p.111.
Myeong-Jong Yi, Jung-Ho Kim, Yoonho Song, Seung-Hwan Chung. Application of threedimensional resistivity imaging technique to the site investigations. 15th EEGS Symposiumon the Application of Geophysics to Engineering and Environmental Problems, 2002, 15 p.112. Neyamadpour A., Abdullah W., Taib S. Inversion of quasi-3D DC resistivity imaging data using artificial neural networks. J. Earth Syst. Sci. 119, No.
1, Feb. 2010, p. 27–40.113. Nimmer R.E., Osiensky J.L., Binley A.M., Williams B.C. Three-dimensional effects causingartifacts in two-dimensional, cross-borehole, electrical imaging. Journal of Hydrology, 359,2008, p. 59–70.127114. Orellana E., Prospeccion geoelectrica en corriente continua. Biblioteca Тесniса Philips, Paraninfo, Madrid, 1972, 523 pp.115. Papadopoulos N.G., Tsourlos P., Papazachos C., Tsokas G.N., Sarris A., Kim J.H. An algorithm for fast 3D inversion of surface electrical resistivity tomography data: application onimaging buried antiquities. Geophysical Prospecting, 59, 2011, p.
557-575.116. Papadopoulos N.G., Tsourlos P., Tsokas G.N., Sarris A. efficient ERT measuring and inversion strategies for 3D imaging of buried antiquities. Near Surface Geophysics, 2007, p. 349361.117. Park S.K., Van G.P. Inversions of pole-pole data for 3-D resistivity structure beneath arraysof electrodes. Geophysics 56, 1991, p. 951-960.118. Pavlova A.M., Shevnin V.A. 3D electrical resistivity tomography in glacial sediments’ research. Procs. Near Surface 2013 – 19th European Meeting of Environmental and Engineering Geophysics, Bochum, Germany, 8 – 11 September 2013.119.
Petrick Wm.R.Jr., Sill Wm.R., Ward S.H. Three dimensional resistivity inversion using alphacenters. Geophysics, 1981, 46, p. 1148-1163.White R.M.S., Collins S., Loke M.H. Resistivityand IP arrays, optimised for data collection and inversion. Exploration Geophysics, 2003, 34,p. 229–232.120. Pidlisecky A., Knight R. 2008. FW2_5D: A MATLAB 2.5-D electrical resistivity modelingcode. Computers and Geosciences, 34, p. 1645–1654.121. Pidlisecky A., Haber E., Knight R.
2007. RESINVM3D: A MATLAB 3-D resistivity inversion package. Geophysics 72, H1–H10.122. Ritz M., Robain H., Pervago E., Albouy Y., Camerlynck Ch., Descloitres M. and Mariko A.Improvement to resistivity pseudosection modelling by removal of near-surface inhomogeneity effects: application to a soil system in south Cameroon". Geophysical Prospecting, 1999,47, pp.123. Schlumberger C., Schlumberger M., Leonardon E.G. Some observations concerning electricalmeasurements in anisotropic media and their interpretation: Trans. AIME, 1934, v. 110, p.159-182.124. Shevnin V.A., Erokhin S.A., Pavlova A.M.
Anisotropy of hydraulic conductivity investigations with azimuthal self potential measurements. Procs. Near Surface 2012 – 18th EuropeanMeeting of Environmental and Engineering Geophysics, Paris, France. 3 – 5 September 2012.125. Simon A. Theory of potential mapping and its processing methods. Report of the Eötvös Loránd Geophysical Institute, Budapest (in Hungarian), 1974.128126. Sjödahl P.
Resistivity investigation and monitoring for detection of internal erosion andanomalous seepage in embankment dams. 2006, Doctoral Thesis, ISRN LUTVDG/TVTG—1017-SE, ISBN 978-91-973406-5-6, Lund University, Lund, 86 p.127. Sjödahl P., Dahlin T., Johansson S., Loke M.H. Resistivity monitoring for leakage and internal erosion detection at Hällby embankment dam. Journal of Applied Geophysics, 2008, 65(3-4), p. 155-164.128.
Szalai S., Novák A., Varga M., Szarka L. Practical Results of a Research Project. Procs. NearSurface 2011 – 17th European Meeting of Environmental and Engineering Geophysics,Leicester, UK, 12-14 September 2011, 6 p.129. Turcotte D.L. Fractals and Chaos in Geology and Geophysics. 2-nd edition. Cambridge University Press, Cambridge, UK, 1997, 398 p.130. Varga M., Novák A. and Szarka L.
Application of tensorial electrical resistivity mapping toarchaeological prospection. Near Surface Geophysics, 2008, 39-47. Применение тензорногометода электрического сопротивления при площадной съемке СГ в археологическихизысканиях (перевод Павловой А.М.).131. Vickery A., Hobbs B. The effect of subsurface pipes on apparent-resistivity measurements.Geophysical Prospecting 50, 2002 , p. 1-13.132. Watson K., Barker R. Tank modelling of azimuthal resistivity surveys over anisotropic bedrock with dipping overburden. Near Surface Geophysics, 2010, 8, p. 297-309.133. Wishart D., Slater L., Alexander G.
Fracture anisotropy characterization in crystalline bedrock using field-scale azimuthal self potential gradient. Journal of Hydrology, 2008, 358, p.35– 45.134. Wishart D., Slater L., Alexander G. Self potential improves characterization of hydraulicallyactive fractures from azimuthal geoelectrical measurements. Geophysical research letters,Vol. 33, L17314, doi:10.1029/2006GL027092, 2006.135. Yang X., Lagmanson M. Comparison of 2D and 3D electrical resistivity imaging methods.SAGEEP proceedings, 2006, p. 585-594..