GLAVA3 (1093049), страница 2
Текст из файла (страница 2)
и по аналогии:
Уравнения (3.28) и (3.29) – уравнения Кирхгофа в интегральной форме записи.
В обобщенной форме записи:
Кроме того:
Таким образом, для нахождения величины теплового эффекта химической реакции при заданной температуре необходимо знать его величину при любой другой температуре и располагать уравнениями Сi = f (T).
Глава IV. Второе начало термодинамики.
-
Содержание второго начала термодинамики.
Первого начала термодинамики недостаточно для полной характеристики термодинамических процессов. В рамках первого начала можно установить энергетический баланс процессов, но получить сведения о возможности, направлении и пределах их протекания не представляется возможным.
Итак, второе начало позволяет:
-
находить направление и устанавливать возможность самопроизвольного (естественного, спонтанного) течения термодинамических процессов и пределы их протекания;
определять условия, при которых превращение какого-либо запаса энергии в полезную работу происходит наиболее полно.
Предлагаются следующие формулировки второго начала термодинамики:
“... холодное тело В, погруженное в теплое тело А, не может воспринять большую степень теплоты, чем какую имеет А.”
(М. В. Ломоносов)
“... невозможен процесс, единственный результат которого состоял бы в переходе энергии от более холодного тела к более горячему.”
(Рудольф Клаузиус)
“... невозможен процесс, единственный результат которого состоял бы в поглощении теплоты от нагревателя и полного преобразования этой теплоты в работу.”
(У. Томсон (лорд Кельвин))
2. Обратимые и необратимые процессы.
Подобно тому, как в первом начале термодинамики вводится функция состояния – внутренняя энергия, во втором начале – функция состояния, получившая название энтропия (S) (от греческого entropia – поворот, превращение). Рассмотрение изменения этой функции привело к разделению всех процессов на две группы: обратимые и необратимые (самопроизвольные) процессы.
Процесс называется обратимым, если его можно провести сначала в прямом, а затем в обратном направлении и так, что ни в системе, ни в окружающей среде не останется никаких изменений. Полностью обратимый процесс – абстракция, но многие процессы можно вести в таких условиях, чтобы их отклонение от обратимости было весьма мало. Для этого необходи-