Теория систем и системный анализ (1088583), страница 6
Текст из файла (страница 6)
| x | y=a1*x^a2 |
| 20 | 61,27825146 |
| 21 | 61,21551086 |
| 22 | 61,15574933 |
| 23 | 61,09869928 |
| 24 | 61,0441275 |
| 25 | 60,99182958 |
| 26 | 60,94162529 |
| 27 | 60,89335498 |
| 28 | 60,84687652 |
| 29 | 60,80206285 |
| 30 | 60,75879994 |
| 31 | 60,71698502 |
| 32 | 60,67652521 |
| 33 | 60,63733625 |
| 34 | 60,59934147 |
| 35 | 60,56247093 |
| 36 | 60,52666063 |
| 37 | 60,49185187 |
| 38 | 60,45799068 |
| 39 | 60,42502732 |
| A | B | C | |
| 27 | Степенная |
|
|
| 28 |
| a1 = | 65,2563128836179 |
| 29 |
| a2 = | -0,0209958011926464 |
| 30 |
| =20*LN(C28) +C29*L22 | =K22 |
| 31 |
| =LN(C28)*L22 +C29*M22 | =N22 |
| F | G | |
| 26 | x | y=a1*x^a2 |
| 27 | 20 | =$C$28*F27^$C$29 |
| 28 | 21 | =$C$28*F28^$C$29 |
| 29 | 22 | =$C$28*F29^$C$29 |
| 30 | 23 | =$C$28*F30^$C$29 |
| 31 | 24 | =$C$28*F31^$C$29 |
| 32 | 25 | =$C$28*F32^$C$29 |
| 33 | 26 | =$C$28*F33^$C$29 |
| 34 | 27 | =$C$28*F34^$C$29 |
| 35 | 28 | =$C$28*F35^$C$29 |
| 36 | 29 | =$C$28*F36^$C$29 |
| 37 | 30 | =$C$28*F37^$C$29 |
| 38 | 31 | =$C$28*F38^$C$29 |
| 39 | 32 | =$C$28*F39^$C$29 |
| 40 | 33 | =$C$28*F40^$C$29 |
| 41 | 34 | =$C$28*F41^$C$29 |
| 42 | 35 | =$C$28*F42^$C$29 |
| 43 | 36 | =$C$28*F43^$C$29 |
| 44 | 37 | =$C$28*F44^$C$29 |
| 45 | 38 | =$C$28*F45^$C$29 |
| 46 | 39 | =$C$28*F46^$C$29 |
Построим график
2.4.2. Линейная модель.
По значениям в таблице ищем A1 и A2:
| Линейная |
|
|
|
| a1= | -70,5492546 |
|
| a2= | 4,720111079 |
|
| 1355 | 1355 |
|
| 42931 | 42931 |
| x | y=a1+a2*x |
| 20 | 23,85296697 |
| 21 | 28,57307805 |
| 22 | 33,29318913 |
| 23 | 38,0133002 |
| 24 | 42,73341128 |
| 25 | 47,45352236 |
| 26 | 52,17363344 |
| 27 | 56,89374452 |
| 28 | 61,6138556 |
| 29 | 66,33396668 |
| 30 | 71,05407776 |
| 31 | 75,77418883 |
| 32 | 80,49429991 |
| 33 | 85,21441099 |
| 34 | 89,93452207 |
| 35 | 94,65463315 |
| 36 | 99,37474423 |
| 37 | 104,0948553 |
| 38 | 108,8149664 |
| 39 | 113,5350775 |
| A | B | C | |
| 25 | Линейная |
|
|
| 26 |
| a1 = | -70,5492546 |
| 27 |
| a2 = | 4,720111079 |
| 28 |
| =(C26*20) +(C27*A22) | =B22 |
| 29 |
| =(C26*A22) +(C27*C22) | =D22 |
| F | G | |
| 26 | x | y=a1+a2*x |
| 27 | 20 | =$C$26+$C$27*I28 |
| 28 | 21 | =$C$26+$C$27*I29 |
| 29 | 22 | |
| 30 | 23 | |
| 31 | 24 | |
| 32 | 25 | |
| 33 | 26 | |
| 34 | 27 | |
| 35 | 28 | |
| 36 | 29 | |
| 37 | 30 | |
| 38 | 31 | |
| 39 | 32 | |
| 40 | 33 | |
| 41 | 34 | |
| 42 | 35 | |
| 43 | 36 | |
| 44 | 37 | |
| 45 | 38 | |
| 46 | 39 |
Построим график
2.4.3. Параболическая модель.
По значениям в таблице ищем A1, A2 и A3:
| Параболическая |
| ||
|
| a1= | -93,13940508 | |
|
| a2= | 6,317524671 | |
|
| a3= | -0,02712453 | |
|
| 1355 | 1355 | |
|
| 42931 | 42931 | |
|
| 1399331 | 1399331 | |
| x | y=a1+a2*x+a3*x^2 |
| 20 | 22,36127641 |
| 21 | 27,56669535 |
| 22 | 32,71786524 |
| 23 | 37,81478607 |
| 24 | 42,85745784 |
| 25 | 47,84588055 |
| 26 | 52,7800542 |
| 27 | 57,65997879 |
| 28 | 62,48565432 |
| 29 | 67,25708079 |
| 30 | 71,9742582 |
| 31 | 76,63718655 |
| 32 | 81,24586585 |
| 33 | 85,80029608 |
| 34 | 90,30047725 |
| 35 | 94,74640936 |
| 36 | 99,13809242 |
| 37 | 103,4755264 |
| 38 | 107,7587113 |
| 39 | 111,9876472 |
| A | B | C | |
| 25 | Параболическая |
| |
| 26 |
| a1 = | -93,13940508 |
| 27 |
| a2 = | 6,317524671 |
| 28 | a3 = | -0,02712453 | |
| 29 |
| =(C26*20)+(C27*A22)+ (C28*C22) | =B22 |
| 30 |
| =(C26*A22)+(C27*C22)+C28*E22 | =D22 |
| 31 | =C26*C22+C27*E22+C28*F22 | =G22 | |












