Конспект (часть 1) (1085867), страница 3
Текст из файла (страница 3)
P = [σ]pF; (2.3)
при сжатии
P = [σ]сжF; (2.4)
при изгибе
M = [σ]pW, (2.5)
где [σ]p — допускаемое напряжение при растяжении; [σ]сж — допускаемое напряжение при сжатии; F— площадь поперечного сечения; W— момент сопротивления сечения.
В конструкциях со сварными соединениями в металле швов могут возникать напряжения двух родов: рабочие и связующие. Чтобы установить различие между рабочими и связующими напряжениями, рассмотрим несколько примеров.
На рис. 2.1, а изображены две полосы, соединенные стыковым швом. Полосы подвергаются растяжению. Очевидно, что при разрушении шва разрушится и вся конструкция. То же самое произойдет и в соединении, изображенном на рис. 2.1, б.
Сварные соединения, разрушение которых влечет за собой выход из строя конструкции, будем называть рабочими, а напряжения, действующие в этих соединениях, — рабочими напряжениями.
Совершенно иначе работает наплавленный металл в шве, соединяющем две полосы, показанные на рис. 2.1, в. Наплавленный металл, соединяющий полосы, деформируется вместе с основным металлом; при этом в нем возникают напряжения. Если модуль упругости наплавленного металла незначительно отличается от модуля упругости основного, то в швах при их работе в пределах упругих деформаций образуются напряжения приблизительно той же величины, что и в растягиваемых полосах. Эти напряжения, возникающие в швах, вследствие их совместной работы с основным металлом во многих случаях не опасны для прочности конструкции и называются связующими. Пример связующих швов показан и на рис. 2.1, г.
При расчете прочности сварных соединений определяют только рабочие напряжения. Исследования подтверждают, что в большинстве случаев при анализе прочности сварных конструкций связующие напряжения можно не учитывать.
Основными типами сварных, соединений являются соединения стыковые, нахлесточные, тавровые, угловые. В сварных конструкциях наиболее целесообразны стыковые соединения.
Стыковые соединения. Подготовка кромок стыкового соединения определяется технологическим процессом сварки и толщиной соединяемых элементов. В табл. 2.5 приведены примеры подготовки кромок стыковых соединений при сварке под флюсом по ГОСТ 8713—70. Можно видеть, что обозначения Cl, C2 и т. д. соответствуют определенному характеру выполнения шва (односторонний, двусторонний, на подкладке и т. д.) и форме подготовленных кромок. При других методах дуговой сварки подготовка кромок регламентируется ГОСТ 14771—76 (в защитном газе) и 5264—69 (ручная).
При выполнении многослойных стыковых швов в защитном газе все чаще используют щелевую подготовку кромок без их скоса. Этот прием требует тщательной укладки слоев, его применяют при сварке элементов толщиной до 50 мм. Как правило, стыковые швы делают прямыми, т. е. направленными перпендикулярно действующим усилиям.
Примеры стыковых соединений, выполняемых сваркой под флюсом (по ГОСТ 8713—70)
Форма подготовленных кромок | Характер выполненного шва | Форма поперечного сечения | Пределы толщин свариваемых деталей, мм | Условное обозначение шва сваренного соединения | |
подготовленных кромок | Выполненного шва | ||||
С отбортовкой двух кромок | Односторонний | 1,5—3,0 | С1 | ||
Двусторонний | 2,0—20,0 | С2 | |||
Односторонний | 2,0—12,0 | С4 | |||
Без скоса кромок | Односторонний на флюсомедной подкладке | 4,0—10,0 | С6 | ||
Двусторонний | 14,0—24,0 | С13 | |||
Односторонний на флюсомедной подкладке | 8,0—24,0 | С17 | |||
Со скосом двух кромок | Односторонний на стальной подкладке | 8,0—30,0 | С18 | ||
С криволинейным скосом двух кромок | Двусторонний | 24,0— — 1о0,0 | С21 | ||
С двумя симметричными скосами двух кромок | 20,0—60,С | СЗО | |||
С двумя несимметричными скосами двух кромок | Двусторонний с предварительным наложением подварочного шва | 16,0—60,С | С34 |
Таблица 2.5
Примечание, Обозначение способов сварки рассмотрено в § 9 настоящей главы.
Если элемент работает на растяжение, то допускаемое усилие в сварном стыковом соединении
P = [σ`]p sl; (2.6)
при сжатии
Р = [σ`]сж sl, (2.7)
где s — толщина основного металла, так как усиление шва не учитывается; l — длина шва; [σ`]p —допускаемое напряжение растяжения сварного соединения; [σ]сж—допускаемое напряжение сжатия сварного соединения.
Если [σ']р = [σ]р, то сварной шов равнопрочен основному металлу.
П ри работе элементов из высокопрочных сталей наиболее слабым участком в сварном соединении оказывается не металл шва, а прилежащая к нему зона, которая в результате термического действия дуги или образования концентраторов напряжений может оказаться разупрочненной. В таких случаях необходимо заменить расчет прочности швов расчетом прочности соединений в ослабленных зонах с учетом особенностей механических свойств металла, его термической обработки и других факторов, зависящих от конкретных условий. Если стыковой шов направлен под углом α к усилию (как правило, α = 45°), то его следует считать равнопрочным основному элементу.
Нахлестанные соединения. В нахлесточных соединениях швы называются угловыми.
При ручной сварке угловые швы имеют различные очертания: нормальные, условно принимаемые очерченными в форме равнобедренного треугольника, выпуклые, вогнутые (рис. 2.2, а—в).
Выпуклые швы нецелесообразны ни с технической, ни с экономической стороны. Они требуют больше наплавленного металла, вызывают концентрацию напряжений.
Целесообразны швы, имеющие очертания неравнобедренных треугольников с отношением основания шва к высоте 1,5:1; 2:1 (рис. 2.2, г, д). В швах этого типа иногда производят механическую обработку концов, чтобы обеспечить плавное сопряжение наплавленного металла с основным (рис. 2.2. е). Подобного рода швы, как будет показано ниже, целесообразно применять в конструкциях, работающих при циклических нагружениях.
В широкой практике конструирования распространено применение угловых швов с нормальными очертаниями (рис. 2.2, а). Размер катета углового шва нормального очертания обозначают К.
Угловые швы при сварке под слоем флюса получаются с более глубоким проплавлением, чем при ручной сварке. Их очертания показаны на рис, 2.3 Расчетная высота шва зависит от глубины проплавлення, от технологического процесса сварки. Она определяется величиной Kβ. При ручной и многопроходной автоматической и полуавтоматической сварке β = 0,7; для двух- и трехпроходной полуавтоматической сварки β = 0,8; для двух- и трехпроходной автоматической сварки и однопроходной полуавтоматической сварки β — 0,9; для однопроходной автоматической сварки β = 1,1.
Наименьшая толщина рабочих швов в машиностроительных конструкциях 3 мм. Исключение составляют конструкции, в которых толщина самого металла меньше 3 мм. Верхний предел толщины швов не ограничен, но применение швов, у которых К ≥ 20 мм, встречается редко. В местах зажигания и обрыва дуги механические свойства швов ухудшаются, поэтому минимальную длину рабочих швов целесообразно ограничивать и принимать равной 30 мм. Швы меньших размеров применяют лишь в качестве нерабочих соединений. В зависимости от направления угловых швов по отношению к действующему усилию их разделяют на лобовые, косые, фланговые, комбинированные.
Лобовые швы направлены перпендикулярно усилию. В соединении, показанном на рис. 2.4, а, усилие Р передается двумя лобовыми швами. Вследствие эксцентриситета элементы несколько искривляются. Расстояние между лобовыми швами следует принимать С ≥ 4s. На рис. 2.4, б усилие Р передается через один лобовой шов на накладку; далее это же усилие переходит с накладки на второй лист. Таким образом, в соединении этого рода имеется лишь один расчетный шов.
Рассмотрим несущую способность угловых швов. В лобовом шве возникает несколько составляющих напряжений (рис. 2.4, в): нормальные напряжения σ на вертикальной плоскости шва и касательные т на горизонтальной.
По методу, принятому в инженерной практике, расчет прочности лобовых швов производится на срез. Этот метод является условным и приближенным. При статических нагрузках и треугольном очертании шва слабым сечением считают наименьшее сечение, совпадающее с биссектрисой О—О прямого угла. По этой плоскости проверяют прочность лобового шва; напряжение при этом не должно превышать допускаемого [τ'].