Главная » Просмотр файлов » Кольца и поля. Кольца. Специальные типы колец. Гомоморфизмы колец и факторизация. Модули и алгебры. Алгебры на полем

Кольца и поля. Кольца. Специальные типы колец. Гомоморфизмы колец и факторизация. Модули и алгебры. Алгебры на полем (1078528), страница 3

Файл №1078528 Кольца и поля. Кольца. Специальные типы колец. Гомоморфизмы колец и факторизация. Модули и алгебры. Алгебры на полем (Избранные лекции) 3 страницаКольца и поля. Кольца. Специальные типы колец. Гомоморфизмы колец и факторизация. Модули и алгебры. Алгебры на полем (1078528) страница 32018-01-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Например, в линейном пространстве V3 существует операция векторного произведения, связанная со сложением законом дистрибутивности, а с умножением на число закономассоциативности. Таким образом, V3 есть алгебра над R. Однако, векторное умножение неассоциативно, хотя удовлетворяет тождествуÌÃÒÓÔÍ-12ÌÃÒÓ41ÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÔÍ-1216. КОЛЬЦА И ПОЛЯÌÃÒÓÔÍ-12ÌÃÒÓ42xu. Алгебру размерности n без единицы можно расширить до (n + 1)-мерной алгебры вводя наP ⊗ A умножение(α1 , a1 )(α2 , a2 ) = (α1 α2 , α1 a2 + α2 a1 + a1 a2 ).IАлгебра с делением — алгебра, являющееся телом относительно операций сложения и умножения.Теорема 16.3 (Фробениус). Существует лишь три ассоциативные конечномерные алгебры с делением над R: R, C, H, имеющие размерность 1, 2, 4.ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12Кроме указанных в теореме Фробениуса, существует еще одна неассоциативная конечномерная алгебра с делением размерности 8, называемая алгеброй октав.

Четырехмерная алгебра сделением — это алгебра кватернионов.ÌÃÒÓÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÔÍ-1216. КОЛЬЦА И ПОЛЯÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓ...............................................................................................9. Жорданова нормальная форма9.1. Корневые подпространства . .

.9.2. Жорданова нормальная форма9.3. Комплексные корни . . . . . . .9.4. Теорема Кэли — Гамильтона .........................................................................................121214192013. Операции над тензорами13.1. Понятие тензора . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.13.2. Матричная запись тензоров . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13.3. Преобразование тензоров, записанных в матричной форме . . . . . . . . . . . . . .2222232414. Множества и отношения14.1. Алгебра множеств . . . . . . . . . .14.2. Отображения и соответствия . . .14.3. Отношения и операции . .

. . . . .14.4. Элементы математической логики14.5. Мощность множеств . . . . . . . ......262630323435.....363636363640..........................16. Кольца и поля16.1. Кольца . . . . . . . . . . . . . . . . . .16.2. Специальные типы колец . . . . . . . .16.3. Гомоморфизмы колец и факторизация16.4.

Модули и алгебры . . . . . . . . . . . .16.5. Алгебры на полем . . . . . . . . . . . .......................................................................................................................................................................................................................................................................................................................................................19. Полукольца и булевы алгебры19.1. Определение полукольца . . .19.2. Ряды в полукольцах .

. . . . .19.3. Замкнутые полукольца . . . .19.4. Системы линейных уравнений19.5. Симметричные полукольца . .19.6. Решетки . . . . . . . . . . . ...................................................................................................................51515357586367...в... . . . . . . .. . . . . . .

.. . . . . . . .полукольцах. . . . . . . .. . . . . . . .69............ÔÍ-12.....434345494950ÌÃÒÓ17. Кольцо многочленов17.1. Определение кольца многочленов . . . . . . . . .17.2. Деление с остатком и его свойства . . . . . . . .17.3. Разложение на неприводимые множители . . . .17.4. Использование делимости в теории шифрования17.5.

Кватернионы . . . . . . . . . . . . . . . . . . . . .ÌÃÒÓÔÍ-12ÌÃÒÓ.....ÔÍ-12ÔÍ-12.....ÌÃÒÓÌÃÒÓ.....1134610ÔÍ-124. Псевдорешения и псевдообратная матрица4.1. Метод наименьших квадратов . . . . . . . .4.2. Псевдорешения . . . . . . . . . . .

. . . . . .4.3. Скелетное разложение . . . . . . . . . . . .4.4. Псевдообратная матрица . . . . . . . . . . .4.5. Проектирование на подпространство . . . .ÌÃÒÓÔÍ-12ОГЛАВЛЕНИЕÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓ.

Характеристики

Тип файла
PDF-файл
Размер
799,55 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Избранные лекции
Полукольца и булевы алгебры. Определение полукольца. Ряды в полукольцах. Замкнутые полукольца. Системы линейных уравнений в полукольцах.pdf
Псевдорешения и псевдообратная матрица. Метод наименьших квадратов. Псевдорешения. Скелетное разложение. Псевдообратная матрица. Проектирование на подпространство.pdf
Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее