Конспект лекций (1072518), страница 5
Текст из файла (страница 5)
В результате бомбардировки поверхности полупроводника и внедрения в его объем ионов примеси в кристалле возникают дефекты, а при больших дозах ионов могут образовываться аморфные участки. Для устранения радиационных дефектов, а также для перемещения электрически неактивных ионов в узлы кристаллической решетки применяется отжиг при температуре 800 – 1200 К.
Уникальная возможность ионной имплантации состоит в легировании материалов атомами отдачи, которые могут получать достаточно высокую энергию от ускоренных ионов и перемещаться на несколько нанометров, что позволяет создавать сверхтонкие легированные слои. Например, если на поверхность кремния нанести тонкую пленку алюминия, а затем бомбардировать ее ионами Si+, Al+ или ионами инертных газов, то атомы алюминия из металлической пленки перемещаются в глубь кремния и образуют слой с максимальной концентрацией атомов у границы кремний-алюминий и спадающей по гиперболе до глубины 5 – 10 нм. При этом удается получить выход атомов отдачи до 10 на один внедренный ион.
Ионная имплантация в металлы и диэлектрики позволяет в широких пределах изменять их свойства. Удается, например, сплавлять металлы, не смешиваемые в жидком состоянии: так, молибден в алюминии практически не растворим, а в результате ионной имплантации в поверхностном слое алюминия образуется сплав, содержащий 25% молибдена. При этом повышается стойкость алюминия к питтинговой коррозии. С помощью ионной имплантации получены пересыщенные твердые растворы, метастабильные интерметаллические соединения, равновесные сплавы и аморфные фазы.
Дозы ионов при имплантации в металлы на 1 – 3 порядка превышают дозы при легировании полупроводниковых материалов и составляют 1016 – 1019 ион/см2. Модификация поверхностных слоев многокомпонентных материалов, таких как стали и сплавы, может быть обусловлена не только имплантацией ионов примеси, но и перераспределением компонентов сплава. Ионной имплантацией можно упрочнять металлы путем изменения структуры поверхности в процессе бомбардировки. При упрочнении металлов (деталей машин, инструмента и т.д.) в их поверхность могут быть имплантированы ионы, играющие роль твердой смазки.
Ионная имплантация в металлы применяется для изменения их поверхностных свойств: увеличения твердости, износостойкости, коррозионной и радиационной стойкости, увеличения сопротивления усталостному разрушению, уменьшения коэффициента трения, управления химическими, оптическими и другими свойствами. Ионная имплантация позволяет упрочнять поверхностные слои металлов и сплавов путем перевода их в аморфное состояние. Аморфизация поверхности различных металлов (Al, Co, Ni, Fe и др.) достигается при имплантации в них ионов металлоидов (B+, P+, As+) или при бомбардировке ионами W+, Ta+, Au+ сталей, в том числе коррозионно-стойких. Для сопротивления изнашиванию наиболее часто используется имплантация ионов N+, B+, C+, Ti+, после чего долговечность деталей или инструмента увеличивается в 2 – 10 раз (Рис.32).
В полимерных материалах ионное легирование позволяет менять электропроводность, которая может возрастать до 14 порядков, структуру и химический состав. Увеличение проводимости связано с перестройкой молекулярной структуры, разрывом связей C-H и появлением избыточного углерода. Имплантируются ионы C+, O+, N+, Ar+ с энергией приблизительно 15 кэВ.
Оборудование ионной имплантации (Рис.33) включает в себя: ионный источник, экстрагирующую и фокусирующую ионную оптику, ускоряющую систему, масс-сепаратор, устройство сканирования ионного пучка, источники питания, приемную камеру, вакуумную систему, устройства контроля и управления технологическим процессом. Оно характеризуется диапазоном энергии ионов от десятков кэВ до нескольких МэВ и плотностью ионного тока от 1010 до 1019 ион/см2.
Атомы имплантированной примеси вводятся в ионный источник либо напуском в виде газа, либо испарением жидкости или твердого вещества. В ионном источнике они ионизируются и вытягиваются электрическим потенциалом в ускоритель, где приобретают нужную энергию. Существует несколько типов источников ионов: с горячим, холодным и полым катодом; дуоплазмотроны; источники с ВЧ и СВЧ возбуждением; с поверхностной ионизацией. Для получения многозарядных (двух или трехзарядных) ионов используются дуговой источник с катодом косвенного накала.
Ускоритель ионов предназначен для сообщения ионам необходимой плотности энергии и фокусировки пучка при его движении вдоль ускорителя. Он может располагаться до или после масс-сепаратора. Масс-сепаратор применяется для отделения имплантируемых ионов от других веществ, присутствующих при формировании пучка в источнике ионов, т.е. для создания моноизотопного пучка ионов. Принцип его действия основан на различии радиуса R отклонения ускоренных электрическим потенциалом U ионов с разной массой m и зарядом zq в магнитном поле B
Устройство сканирования ионного пучка направляет сфокусированный ионный луч в нужное место мишени по заданной программе. В оборудовании ионной имплантации применяются три способа сканирования: механическое, электростатическое и комбинированное. При механическом сканировании ионный луч не перемещается в перпендикулярных его движению направлениях, а перемещается мишень относительно луча в двух взаимно перпендикулярных направлениях. При электростатическом сканировании ускоренный потенциалом U ионный луч отклоняется от направления своего движения потенциалом Ur отклоняющих электродов длиной l и расстоянием между ними d на угол
Отклонение ионного луча на поверхности мишени равно y= L tg, где L – расстояние от отклоняющей системы до мишени. Система сканирования должна обеспечивать однородность легирования поверхности, поэтому необходимо учитывать наклон мишени к направлению движения ионного пучка, неравномерность скорости сканирования луча при различных углах , диаметр или стороны сечения ионного пучка, неравномерность плотности ионного тока по сечению пучка.
Приемная камера служит для загрузки, фиксации, перемещения во время легирования и выгрузки обрабатываемых изделий. Вакуумные системы оборудования ионной имплантации строятся как на масляных (с использованием диффузионных насосов), так и на безмасляных вакуумных насосах (турбомолекулярных или криогенных).
Измерения и контроль в вакууме
Измерения и контроль в вакууме обладают уникальными возможностями исключить влияние окружающей среды и человека на точность и достоверность результатов, а также уменьшить погрешность измерений до физических констант – размеров атомов и молекул. С помощью электронных, ионных, оптических, рентгеновских пучков и газоразрядной плазмы можно измерять геометрические размеры, определять физические и химические свойства обрабатываемых материалов, а также контролировать параметры технологических процессов. Даже самые лучшие оптические микроскопы не позволяют наблюдать объекты меньше, чем 0,3 мкм. В электронных же микроскопах достигается разрешение 1 нм, а в некоторых типах 0,5 нм (при определенных условиях можно рассматривать даже отдельные атомы). Максимальная величина увеличения оптического микроскопа составляет 1000, электронного - 100000, а электронного для наблюдения отдельных атомов - 1000000.
Электронные и ионные микроскопы подразделяются на три типа: просвечивающие, зеркальные и эмиссионные и могут использоваться в двух режимах - проекционном и растровом сканирующем.
С помощью сканирующих электронных микроскопов можно получать информацию: а) об изображении поверхности, топологических контрастов, структуры материала, магнитных доменов; б) об атомном номере материалов поверхности, их химическом составе, кристаллической ориентации и структуре кристаллов; в) о распределении электрических потенциалов в поверхностных структурах, местонахождении и высоте потенциальных барьеров, изменении проводимости, глубине и толщине р-n переходов, величине запрещенной зоны, распределении примесей и т.п. В режиме просвечивания можно наблюдать движение атомов и изучать ядерные процессы. Кроме того, электронная оже-спектроскопия (Рис.34) позволяет непосредственно во время осаждения пленок или формирования слоев получать карту элементного анализа материалов, т.е. контролировать качество проведения технологического процесса.
Микроскоп с автоионной эмиссией имеет четкость разрешения, позволяющую наблюдать на поверхности металлических кристаллов массивы атомов с очень малыми радиусами. Рентгеновские микроскопы относятся к устройствам обычного проекционного увеличения. Основное ограничение заключается в интенсивности рентгеновского излучения и поэтому разрешение составляет величину порядка 0,1 мкм, что намного больше их теоретического предела, но лучше, чем в оптических микроскопах.
Для химического анализа поверхностей и пленок используется ряд методов, в которых отдается предпочтение рентгеновским и ионным пучкам, а не электронам. Коллимированный пучок рентгеновских лучей, при одинаковых с электронами энергиях проникает в вещество значительно глубже и, следовательно, дает больше информации о составе материала на больших глубинах. Рентгеновские лучи выбивают электроны, которые несут информацию о состоянии химических связей атомов, а измерение энергетического спектра эмиттированных с поверхности электронов позволяет осуществлять химический анализ приповерхностной области образца.
В ионно-рассеивающей спектроскопии твердых поверхностей применяются ионные пучки низких энергий (0,1 - 1 кэВ) относительно большой интенсивности, сфокусированные в пятно малого диаметра на исследуемую поверхность и перемещаемые по ней с помощью ионно-оптической системы. В большинстве случаев используются ионы инертных газов. Метод упругого обратного рассеяния легких ионов с большой энергией, например, гелия при 1 - 3 МэВ, называемый резерфордовской спектроскопией обратного рассеяния, используется для изучения дефектов кристаллической решетки после имплантации и отжига, распределения примесных атомов в кристалле и для исследования поверхностей и тонких пленок.
В методе вторичной ионной масс-спектрометрии анализируются массы распыленных первичным ионным пучком вторичных ионов. Для этой цели обычно используются квадрупольные масс-спектрометры с разрешением порядка 1 а.е.м. (атомная единица массы). Изображения поверхностных неоднородностей могут получаться путем проецирования или растровым сканированием. Первичный ионный пучок используется также для удаления поверхностных слоев при исследовании профилей концентрации по глубине с шагом порядка 5 нм. Вторично-ионные масс-спектрометры могут работать как в качестве ионного микрозонда, так и для формирования реального изображения поверхности. Они позволяют наблюдать все химические элементы, включая водород, исследовать отдельные изотопы элемента, их номера и время жизни. По чувствительности этот метод превосходит электронную оже-спектроскопию и электронный зондовый микроанализ.
Таким образом, в качестве инструмента для измерений, контроля и исследований электронные, ионные, оптические и рентгеновские лучи позволяют определять геометрические размеры вплоть до размеров отдельных атомов (0,1 - 0,3 нм), выявлять химический состав вещества с погрешностью до 10-4 % как на поверхности образца, так и по всей его толщине. Возможность получать элементы изделий с размерами 10 - 25 нм наталкивается на явления, связанные с фундаментальными свойствами материалов, эффекты электромиграции и пробоя диэлектриков, изменения удельного сопротивления, рассеяния мощности, тепловых, механических и других характеристик. Преодоление этих ограничений, свойственных микромиру, связано с поиском новых физических эффектов, как для создания микроструктур новых типов, так и разработки новых технологических методов.
Важной особенностью применения измерения и контроля в вакууме является объединение в оборудовании технологических и аналитических операций, т.е. создание аналитико-технологических комплексов (рис.52). Уникальные исследования поверхности можно проводить только на сверхвысоковакуумном аналитическом оборудовании (Рис.53).
Расчет режимов ЭИПТ и показателей качества изделий