Главная » Просмотр файлов » Конспект лекций

Конспект лекций (1072518), страница 5

Файл №1072518 Конспект лекций (Конспект лекций) 5 страницаКонспект лекций (1072518) страница 52017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

В результате бомбардировки поверхности полупроводника и внедрения в его объем ионов примеси в кристалле возникают дефекты, а при больших дозах ионов могут образовываться аморфные участки. Для устранения радиационных дефектов, а также для перемещения электрически неактивных ионов в узлы кристаллической решетки применяется отжиг при температуре 800 – 1200 К.

Уникальная возможность ионной имплантации состоит в легировании материалов атомами отдачи, которые могут получать достаточно высокую энергию от ускоренных ионов и перемещаться на несколько нанометров, что позволяет создавать сверхтонкие легированные слои. Например, если на поверхность кремния нанести тонкую пленку алюминия, а затем бомбардировать ее ионами Si+, Al+ или ионами инертных газов, то атомы алюминия из металлической пленки перемещаются в глубь кремния и образуют слой с максимальной концентрацией атомов у границы кремний-алюминий и спадающей по гиперболе до глубины 5 – 10 нм. При этом удается получить выход атомов отдачи до 10 на один внедренный ион.

Ионная имплантация в металлы и диэлектрики позволяет в широких пределах изменять их свойства. Удается, например, сплавлять металлы, не смешиваемые в жидком состоянии: так, молибден в алюминии практически не растворим, а в результате ионной имплантации в поверхностном слое алюминия образуется сплав, содержащий 25% молибдена. При этом повышается стойкость алюминия к питтинговой коррозии. С помощью ионной имплантации получены пересыщенные твердые растворы, метастабильные интерметаллические соединения, равновесные сплавы и аморфные фазы.

Дозы ионов при имплантации в металлы на 1 – 3 порядка превышают дозы при легировании полупроводниковых материалов и составляют 1016 – 1019 ион/см2. Модификация поверхностных слоев многокомпонентных материалов, таких как стали и сплавы, может быть обусловлена не только имплантацией ионов примеси, но и перераспределением компонентов сплава. Ионной имплантацией можно упрочнять металлы путем изменения структуры поверхности в процессе бомбардировки. При упрочнении металлов (деталей машин, инструмента и т.д.) в их поверхность могут быть имплантированы ионы, играющие роль твердой смазки.

Ионная имплантация в металлы применяется для изменения их поверхностных свойств: увеличения твердости, износостойкости, коррозионной и радиационной стойкости, увеличения сопротивления усталостному разрушению, уменьшения коэффициента трения, управления химическими, оптическими и другими свойствами. Ионная имплантация позволяет упрочнять поверхностные слои металлов и сплавов путем перевода их в аморфное состояние. Аморфизация поверхности различных металлов (Al, Co, Ni, Fe и др.) достигается при имплантации в них ионов металлоидов (B+, P+, As+) или при бомбардировке ионами W+, Ta+, Au+ сталей, в том числе коррозионно-стойких. Для сопротивления изнашиванию наиболее часто используется имплантация ионов N+, B+, C+, Ti+, после чего долговечность деталей или инструмента увеличивается в 2 – 10 раз (Рис.32).

В полимерных материалах ионное легирование позволяет менять электропроводность, которая может возрастать до 14 порядков, структуру и химический состав. Увеличение проводимости связано с перестройкой молекулярной структуры, разрывом связей C-H и появлением избыточного углерода. Имплантируются ионы C+, O+, N+, Ar+ с энергией приблизительно 15 кэВ.

Оборудование ионной имплантации (Рис.33) включает в себя: ионный источник, экстрагирующую и фокусирующую ионную оптику, ускоряющую систему, масс-сепаратор, устройство сканирования ионного пучка, источники питания, приемную камеру, вакуумную систему, устройства контроля и управления технологическим процессом. Оно характеризуется диапазоном энергии ионов от десятков кэВ до нескольких МэВ и плотностью ионного тока от 1010 до 1019 ион/см2.

Атомы имплантированной примеси вводятся в ионный источник либо напуском в виде газа, либо испарением жидкости или твердого вещества. В ионном источнике они ионизируются и вытягиваются электрическим потенциалом в ускоритель, где приобретают нужную энергию. Существует несколько типов источников ионов: с горячим, холодным и полым катодом; дуоплазмотроны; источники с ВЧ и СВЧ возбуждением; с поверхностной ионизацией. Для получения многозарядных (двух или трехзарядных) ионов используются дуговой источник с катодом косвенного накала.

Ускоритель ионов предназначен для сообщения ионам необходимой плотности энергии и фокусировки пучка при его движении вдоль ускорителя. Он может располагаться до или после масс-сепаратора. Масс-сепаратор применяется для отделения имплантируемых ионов от других веществ, присутствующих при формировании пучка в источнике ионов, т.е. для создания моноизотопного пучка ионов. Принцип его действия основан на различии радиуса R отклонения ускоренных электрическим потенциалом U ионов с разной массой m и зарядом zq в магнитном поле B

.

Устройство сканирования ионного пучка направляет сфокусированный ионный луч в нужное место мишени по заданной программе. В оборудовании ионной имплантации применяются три способа сканирования: механическое, электростатическое и комбинированное. При механическом сканировании ионный луч не перемещается в перпендикулярных его движению направлениях, а перемещается мишень относительно луча в двух взаимно перпендикулярных направлениях. При электростатическом сканировании ускоренный потенциалом U ионный луч отклоняется от направления своего движения потенциалом Ur отклоняющих электродов длиной l и расстоянием между ними d на угол

.

Отклонение ионного луча на поверхности мишени равно y= L tg, где L – расстояние от отклоняющей системы до мишени. Система сканирования должна обеспечивать однородность легирования поверхности, поэтому необходимо учитывать наклон мишени к направлению движения ионного пучка, неравномерность скорости сканирования луча при различных углах , диаметр или стороны сечения ионного пучка, неравномерность плотности ионного тока по сечению пучка.

Приемная камера служит для загрузки, фиксации, перемещения во время легирования и выгрузки обрабатываемых изделий. Вакуумные системы оборудования ионной имплантации строятся как на масляных (с использованием диффузионных насосов), так и на безмасляных вакуумных насосах (турбомолекулярных или криогенных).

Измерения и контроль в вакууме

Измерения и контроль в вакууме обладают уникальными возможностями исключить влияние окружающей среды и человека на точность и достоверность результатов, а также уменьшить погрешность измерений до физических констант – размеров атомов и молекул. С помощью электронных, ионных, оптических, рентгеновских пучков и газоразрядной плазмы можно измерять геометрические размеры, определять физические и химические свойства обрабатываемых материалов, а также контролировать параметры технологических процессов. Даже самые лучшие оптические микроскопы не позволяют наблюдать объекты меньше, чем 0,3 мкм. В электронных же микроскопах достигается разрешение 1 нм, а в некоторых типах 0,5 нм (при определенных условиях можно рассматривать даже отдельные атомы). Максимальная величина увеличения оптического микроскопа составляет 1000, электронного - 100000, а электронного для наблюдения отдельных атомов - 1000000.

Электронные и ионные микроскопы подразделяются на три типа: просвечивающие, зеркальные и эмиссионные и могут использоваться в двух режимах - проекционном и растровом сканирующем.

С помощью сканирующих электронных микроскопов можно получать информацию: а) об изображении поверхности, топологических контрастов, структуры материала, магнитных доменов; б) об атомном номере материалов поверхности, их химическом составе, кристаллической ориентации и структуре кристаллов; в) о распределении электрических потенциалов в поверхностных структурах, местонахождении и высоте потенциальных барьеров, изменении проводимости, глубине и толщине р-n переходов, величине запрещенной зоны, распределении примесей и т.п. В режиме просвечивания можно наблюдать движение атомов и изучать ядерные процессы. Кроме того, электронная оже-спектроскопия (Рис.34) позволяет непосредственно во время осаждения пленок или формирования слоев получать карту элементного анализа материалов, т.е. контролировать качество проведения технологического процесса.

Микроскоп с автоионной эмиссией имеет четкость разрешения, позволяющую наблюдать на поверхности металлических кристаллов массивы атомов с очень малыми радиусами. Рентгеновские микроскопы относятся к устройствам обычного проекционного увеличения. Основное ограничение заключается в интенсивности рентгеновского излучения и поэтому разрешение составляет величину порядка 0,1 мкм, что намного больше их теоретического предела, но лучше, чем в оптических микроскопах.

Для химического анализа поверхностей и пленок используется ряд методов, в которых отдается предпочтение рентгеновским и ионным пучкам, а не электронам. Коллимированный пучок рентгеновских лучей, при одинаковых с электронами энергиях проникает в вещество значительно глубже и, следовательно, дает больше информации о составе материала на больших глубинах. Рентгеновские лучи выбивают электроны, которые несут информацию о состоянии химических связей атомов, а измерение энергетического спектра эмиттированных с поверхности электронов позволяет осуществлять химический анализ приповерхностной области образца.



В ионно-рассеивающей спектроскопии твердых поверхностей применяются ионные пучки низких энергий (0,1 - 1 кэВ) относительно большой интенсивности, сфокусированные в пятно малого диаметра на исследуемую поверхность и перемещаемые по ней с помощью ионно-оптической системы. В большинстве случаев используются ионы инертных газов. Метод упругого обратного рассеяния легких ионов с большой энергией, например, гелия при 1 - 3 МэВ, называемый резерфордовской спектроскопией обратного рассеяния, используется для изучения дефектов кристаллической решетки после имплантации и отжига, распределения примесных атомов в кристалле и для исследования поверхностей и тонких пленок.

В методе вторичной ионной масс-спектрометрии анализируются массы распыленных первичным ионным пучком вторичных ионов. Для этой цели обычно используются квадрупольные масс-спектрометры с разрешением порядка 1 а.е.м. (атомная единица массы). Изображения поверхностных неоднородностей могут получаться путем проецирования или растровым сканированием. Первичный ионный пучок используется также для удаления поверхностных слоев при исследовании профилей концентрации по глубине с шагом порядка 5 нм. Вторично-ионные масс-спектрометры могут работать как в качестве ионного микрозонда, так и для формирования реального изображения поверхности. Они позволяют наблюдать все химические элементы, включая водород, исследовать отдельные изотопы элемента, их номера и время жизни. По чувствительности этот метод превосходит электронную оже-спектроскопию и электронный зондовый микроанализ.

Таким образом, в качестве инструмента для измерений, контроля и исследований электронные, ионные, оптические и рентгеновские лучи позволяют определять геометрические размеры вплоть до размеров отдельных атомов (0,1 - 0,3 нм), выявлять химический состав вещества с погрешностью до 10-4 % как на поверхности образца, так и по всей его толщине. Возможность получать элементы изделий с размерами 10 - 25 нм наталкивается на явления, связанные с фундаментальными свойствами материалов, эффекты электромиграции и пробоя диэлектриков, изменения удельного сопротивления, рассеяния мощности, тепловых, механических и других характеристик. Преодоление этих ограничений, свойственных микромиру, связано с поиском новых физических эффектов, как для создания микроструктур новых типов, так и разработки новых технологических методов.

Важной особенностью применения измерения и контроля в вакууме является объединение в оборудовании технологических и аналитических операций, т.е. создание аналитико-технологических комплексов (рис.52). Уникальные исследования поверхности можно проводить только на сверхвысоковакуумном аналитическом оборудовании (Рис.53).

Расчет режимов ЭИПТ и показателей качества изделий

Характеристики

Тип файла
Документ
Размер
4,47 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6553
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее