Цыганков А.С. - Расчеты теплообменных аппаратов (1956) (1062129), страница 16
Текст из файла (страница 16)
Температура рассола, выходящего из охладителя, 1, =10,5 С.. Принимаем Трубки латунные диаметром Ы„)с/,= — 16/14 мм, Число ходов рассола в трубках г=2. Шаг трубок по ширине пучка ля=22 мм. Шаг трубок по глубине пучка 8,=20 мм. Теплоемкость рассола с'=0,93 ккал;кг 'С. р т Удельный вес Рассола Тр — — 1,025 т/м'. ИО Ход расчета 1. Средняя температура воздуха /' =0,5(У, + Уя) =0,5(27+ 18) =22,5'С.
2. По табл. 5 приложений при г' определяем: 1) теплоемкость воздуха с =0,242 ккал кг'С; 2) коэффициент теплопроводности ). =2,18 10 т ккал,'м-час'С; 3) кинематическую вязкость я=15,93 10 ам' сек. 4) удельный вес т= — 1,165 кг ла; 5) удельный вес прн /=15'С, равный чтя=1,185 кг'м'. 3. Весовое количество воздуха, проходящего через охладитель, О' = О„Тш = 3000-1,185 =3560 / 4.
Объемное количество воздуха прн /; О, 3%0. О,"= — '= — = 3080 и,",час. т 5. Количество тепла, отводимое рассолом, (ч=О;с (1т — /я) =-3560 0,242(27 — 18) =7800 ккал/час. 6. Средняя температура рассола /ср=05(/я+ Ря) 0~5(75+ 105) 9 С 7. Количество рассола, потребное для охлаждения воздуха, !5'р —, — 2800 кг/час. с (г4 — га) 0,93 (10„5 — 7,5) 8. Предрарительно принимаем следующие конструктивные размеры охладителя, руководствуясь выполняемым эскизом: Число рядов трубок по глубине пучка .......ш 15 Чис о трубок по ширине пучка.......... и =18 Расстояние между трубными досками.......
1=0,485 м Расстояние от стенки корпуса до крайней трубки а=0,009 м 9. Размер сечения корпуса для прохода воздуха по ширине пучка Ь = (и — 1) з, + т/„+ 23 = (18 — 1) 0,022 + 0,01 6 + 2. 0,009 = =0,408 м. 10. Площадь живого сечения для прохода воздуха ~= (Ь вЂ” иЫ„) /= (0,408 — 18-0,016) 0,485 0,0582 мя.
11. Средняя скорость воздуха в охладителе ~в о = 38007= 3600 О 0582 = 14,6 м/сек. 12. Критерий Рейнольдса для воздуха р,врн 14 6 0 016 1 700 в 15,93.10 13. Коэффициент теплоотдачи от стенки к воздуху для поперечного обтекания трубок шахматного расположения определится по формуле а,=св — Ке"=1,1375 0,245 ' 14700' = Л 2,1810 ~ рл 0,016 = 123 ккал/мв-час'С, где коэффициент с по табл. 9 при += — =1,375: Фн 16 с=1+0,1 — ' — 1+ 0,1 — — 1,13?5, нн в — коэффициент по табл. 9 как средний для 16 рядов: 0,15 + 0,20 + 14.0,255 16 и=0,6 — показатель степени по табл. 9.
14. Средняя температура стенки трубки 1„,=0,5(Е' + 2в ) =0,5(22,5+ 9) =15,75'С. 15. Температура граничного слоя со стороны рассола 8 =0,5(Е + Е")=0,5(15,75+9)=12,3'С. 16. Скорость рассола в трубках мгрр 8 2 — 034 28254~~ 1 авн 2825-0,014в.1,025 18 16 18. Критерий Прандтля для рассола р 3600 1.23.10 Р а 5,1510 в где а = 5,15.10 м'/час — коэффициент температуропроводности рассола при 1, (по табл. 6 приложений). 19. Критерий Грасгофа для рассола уфы 9,81 0,014 1.16.10 ~ 3 ,Р (1,23.10-4)' где р =+1,16 10 4 1/ "С вЂ” коэффициент расширения воды при 1 (по табл. 6 приложений); бг = гв — гв 10,5 — 7,5 = 3' С вЂ” разность температур рассола.
20 Произведение ОгРг=6250 86=535»10'. 21. Коэффициент теплоотдачи от стенки к рассолу для ламинарного потока рассола в трубках а =074 — Рйечл(ОгРг)в'Рг ' =0?4 — ', 390 ' 53500 '.8,6 '=- лв = 397 ккал/лР-час'С, где 1р=0,5 ккал/м-час 'С вЂ” теплопроводность рассола при 1, по данным табл. 6 приложений. 22. Отношение длины трубок к диаметру 1 0,485 а.
=о„о1 =34'6 23. Поправочный коэффициент н по табл. 6: в=1,036. 24. Коэффициент теплоотдачи от стенки к рассолу с учетом поправочного коэффициента а'=ва =1,036 397=412 ккал/мв-час'С. 25. Коэффициент теплопроводности латунных трубок 1, = 90 ккал/м-час 'С. 26. Коэффициент теплопередачи от воздуха к рассолу 113 а-л. с. П вв 17. Критерий Рейнольдса для рассола р1дв 0,0342.0,014 390 р 1,23 1о-б где вр —— 1,23.10 ' при 1 12,3'С (по табл. 6 приложений). И2 1 ан ав 1 2нн 1 о,огб — о,о14 1 2.0 о16 -— 93 ккал/м'-час С. 123 2 90 412 0,016+ 0,014 27.
Средняя логарифмическая разность температур для перекрестного тока воздуха и рассола М— (Гг — Са) — (Гг Г ) (27 1О 5) (18 9) — 12,35О С. 2,3 1я — 27 — 10,5 2,3 1н 18 — 9 28. Необходимая поверхность охлаждения 78гд) ДГн 12,35 93 29. Фактическая поверхность охлаждения по предварительно принятым размерам Гф — — игл„лтл = 3,14»0,016 0,485.16 18 7,0 ма. е В случае охлаждения наружного атмосферного воздуха в расчете охладителя следует учитывать влагосодержание воздуха, а также допустимое (заданное) влагосодержание охлажденного воздуха.
В этом случае при выполнении расчета применяется 7 — гх диаграмма влажного воздуха'. т А. В. Нестеренко, Применение г — В диаграммы в расчетах вентиляции, Стройиздат, 1950. ГЛАВА И! К РАСЧЕТАМ СОПРОТИВЛЕНИЙ й 22, ПОТЕРИ НАПОРА В АППАРАТАХ ы )Рд и"ъ 7 %В цЬ ъв б и и д 17 2В ЛВ тицы жидкости движутся беспорядочно, по кривым линиям и в различных направлениях„ причем пути движения частиц постоянно изменя- Утаю Рнс. 55.
Схема ламииарного и турбулентного движений жидкости в трубе. ются. Такое движение называют вихревым, или турбулентным. Схема ламинарного и турбулентного потоков жидкости, показывающая распределение скоростей по диаметру трубопровода, представлена на рис. 55. Потери напора в аппаратах обусловлива51тся наличием сопротивлений, которые должна преодолеть Движущаяся масса жидкости на своем пути. Этн сопротивления бывают двух родов: а) сопротивление трения жидкости о стенки, зависящее от физических свойств жидкости, ее скорости, от качества поверхности и размеров трубы; б) местные сопротивления, возникающие в результате изменения направления движения, а также в результате изменения геометрической формы потока жидкости.
При протекании жидкостей различают характер их движения. При прямолинейном направлении движения и достаточно медленном течении жидкости частицы ее движутся прямолинейно и параллельно друг другу. Такое движение называют струйчатым, или ламилариым. При больших скоростях, даже в слу- Ю чае прямолинейного направления тече- й ния, отдельные час- м4 Критерием, по которому можно судить о характере режима движения потока, является значение числа Рейнольдса. То значение числа Рейнольдса,' при котором происходит переход режима из ламинарного в турбулентный, называется крилтическим, а скорость потока, соответствующая критическому числу, называется критической скоростью.
Число Рейнольдса (или параметр Рейнольдса) выражается следующей формулой: олт йе= — = —, в ри ю — скорость среды, м/сек; г/ — диаметр трубы, м; т — кинематическая вязкость, м'/сек; Т вЂ” удельный вес, кг/ма; р — динамическая вязкость, нг.сек/м', у=9,81 — ускорение силы тяжести, м/сект. При: Ке (2200 — ламинарный поток; 2200 ( ке < 10 000 — неустойчивое движение; тте ) 10000 — турбулентный поток; Таким образом: Число 2200 — нижнее критическое число Рейнольдса. Число 10000 в верхнее критическое число Рейнольдса.
Потеря на трение в прямом участке трубы йр=Х вЂ” — ' кг/м', (189) где где Х вЂ” коэффициент сопротивления трению; / — длина трубы, м; т/ — диаметр трубы„м; е — скорость среды, м/сек; 7 — удельный вес среды, кг/м'. я'= 9,81 — ускорение силы тяжести, м/сек'. Местные потери: бр = ~ —,— кг/м-, и~ уа (190) ворот /, г 0081 у+1,4 — )+ —" м вод. ст. (191) 116 где ч — коэффициент местного сопротивления; и — скорость среды за местным препятствием, лт/сен; 7 в удельный вес среды, кг/ма; ~ — ускорение силы тяжести, м/сек'.
Сопротивление в трубной системе аппарата: где е — число ходов воды в аппарате; 1 в длина трубки, м; т/ — внутренний диаметр трубки, м; ю †средн скорость воды в трубках, м/сек; и — ускорение силы тяжести, м/сект; р — коэффициент, учитывающий влияние средней температуры и скорости воды (принимается по кривым рис. бб); и, — скорость воды в патрубках, м/сек. В формуле (191) первый член в скобках у итывает твд потери напора на трение в трубках; второй член в скобках учитывает местные по- г,/в терн в трубках.