Курс МСЗИ3 (1027400), страница 4

Файл №1027400 Курс МСЗИ3 (Лекции по информационной безопасности) 4 страницаКурс МСЗИ3 (1027400) страница 42017-12-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Назад | Содержание | Вперед

Технологии цифровых подписей

Как оказалось, теория асимметричного шифрования позволяет очень красиво решать еще одну проблему информационной безопасности – проверку подлинности автора сообщения. Для решения этой проблемы с помощью симметричной криптографии была разработана очень трудоемкая и сложная схема. В то же время с помощью, например, того же алгоритма RSA создать алгоритм проверки подлинности автора и неизменности сообщения чрезвычайно просто.

Предположим, что нам нужно передать какой-либо текст, не обязательно секретный, но важно то, чтобы в него при передаче по незащищенному каналу не были внесены изменения. К таким текстам обычно относятся различные распоряжения, справки, и тому подобная документация, не представляющая секрета. Вычислим от нашего текста какую-либо хеш-функцию – это будет число, которое более или менее уникально характеризует данный текст.

В принципе, можно найти другой текст, который дает то же самое значение хеш-функции, но изменить в нашем тексте десять-двадцать байт так, чтобы текст остался полностью осмысленным, да еще и изменился в выгодную нам сторону (например, уменьшил сумму к оплате в два раза) – чрезвычайно сложно. Именно для устранения этой возможности хеш-функции создают такими же сложными как и криптоалгоритмы – если текст с таким же значением хеш-функции можно будет подобрать только методом полного перебора, а множество значений будет составлять как и для блочных шифров 232–2128 возможных вариантов, то для поиска подобного текста злоумышленнику "потребуются" те же самые миллионы лет.

Таким образом, если мы сможем передать получателю защищенным от изменения методом хеш-сумму от пересылаемого текста, то у него всегда будет возможность самостоятельно вычислить хеш-функцию от текста уже на приемной стороне и сверить ее с присланной нами. Если хотя бы один бит в вычисленной им самостоятельно контрольной сумме текста не совпадет с соответствующим битом в полученном от нас хеш-значении, значит, текст по ходу пересылки подвергся несанкционированному изменению.

Представим теперь готовую к передаче хеш-сумму в виде нескольких k-битных блоков hi, где k – это размер сообщений по алгоритму RSA в предыдущем параграфе. Вычислим над каждым блоком значение si=((hi)d)mod n, где d – это тот самый закрытый ключ отправителя. Теперь сообщение, состоящее из блоков si можно "спокойно" передавать по сети. Никакой опасности по известным hi и si найти Ваш секретный ключ нет – это настолько же сложная задача, как и задача "логарифмирования в конечном поле". А вот любой получатель сообщения может легко прочесть исходное значение hi, выполнив операцию ((si)e)mod n = ((hi)d*e)mod n = hi – Ваш открытый ключ (e,n) есть у всех, а то, что возведение любого числа в степень (e*d) по модулю n дает исходное число, мы доказали в прошлом параграфе. При этом никто другой, кроме Вас, не зная Вашего закрытого ключа d не может, изменив текст, а следовательно, и хеш-сумму, вычислить такие s'i, чтобы при их возведении в степень e получилась хеш-сумма h'i, совпадающая с хеш-суммой фальсифицированного текста.

Таким образом, манипуляции с хеш-суммой текста представляют из себя "асимметричное шифрование наоборот" : при отправке используется закрытый ключ отправителя, а для проверки сообщения – открытый ключ отправителя. Подобная технология получила название "электронная подпись". Информацией, которая уникально идентифицирует отправителя (его виртуальной подписью), является закрытый ключ d. Ни один человек, не владеющий этой информацией, не может создать такую пару (текст,si), что описанный выше алгоритм проверки дал бы положительный результат.

Подобный обмен местами открытого и закрытого ключей для создания из процедуры асимметричного шифрования алгоритма электронной подписи возможен только в тех системах, где выполняется свойство коммутативности ключей. Для других асимметричных систем алгоритм электронной подписи либо значительно отличается от базового, либо вообще не реализуем.

Назад | Содержание | Вперед

Механизм распространения открытых ключей

Казалось бы, асимметричные криптосистемы лишены одного из самых главных недостатков симметричных алгоритмов – необходимости предварительного обмена сторонами секретным ключом по защищенной схеме (например, из рук в руки или с помощью поверенного курьера). Вроде бы достаточно "раструбить" по всему свету о своем открытом ключе, и вот готова надежная линия передачи сообщений.

Но оказывается не все так просто : предположим я Ваш потенциальный собеседник. Для того чтобы отправить зашифрованное сообщение, я должен узнать Ваш открытый ключ. Если Вы не приносили мне его лично на дискете, значит я его просто взял из информационной сети. А теперь главный вопрос : где доказательство, что данный набор байт является именно Вашим открытым ключом? Ведь злоумышленник может сгенерировать произвольную пару (закрытый ключ, открытый ключ), затем активно распространять или пассивно подменять при запросе Ваш открытый ключ созданным им. В этом случае при отправке сообщения 1) я зашифрую его тем ключом, который думаю, что является Вашим, 2) злоумышленник, перехватив сообщение дешифрует его парным закрытым ключом, прочтет и более того : 3) может переслать дальше, зашифровав действительно уже Вашим открытым ключом. Точно так же, но по инверсной схеме, он может подменить и мою электронную подпись под моим письмом.

Таким образом, если между отправителем и получателем нет конфиденциальной схемы передачи асимметричных ключей, то возникает серьезная опасность появления злоумышленника-посредника. Но асимметричная криптография нашла изящный способ очень значительного снижения риска подобной атаки. Если задуматься, то неправильно говорить, что между Вами и Вашим собеседником нет гарантированной линии связи. Несомненно у Вас найдется трое-четверо надежных знакомых в столице или за рубежом, у них в свою очередь также найдется множество знакомых во многих точках страны и мира. В конце концов, Вы пользуетесь программным обеспечением фирм, если не центры, то хотя бы филиалы которых находятся в той стране или в том городе, куда Вы хотите отправить письмо. Проблема только в том, что начиная, со второго от Вас звена ни Вы не знаете человека, ни он Вас, и вероятность того, что он, или более того, крупная компания, будут что-либо делать ради Вас, очень мала.

Но в принципе, если множество единомышленников объединятся с целью создать надежную сеть распространения ключей, то это будет им вполне под силам. А сама асимметричная криптография поможет им в этом следующим образом : на самом деле никуда ходить с дискетой, получив просьбу от своего знакомого передать открытый ключ мистера V.M.B. мистеру R.H.J., не нужно. Ведь Вы общаетесь с Вашим знакомым, значит, у Вас есть его открытый ключ, полученный каким-либо надежным способом. А следовательно, он может Вам прислать этот открытый ключ мистера V.M.B., подписав сообщение своей электронной подписью. А от Вас в свою очередь требуется всего лишь отправить этот ключ дальше по цепочке в направлении мистера R.H.J., подписав уже своей электронной подписью. Таким образом, минуя несколько переподписываний, открытый ключ дойдет от места отправления к месту требования по надежному пути. В принципе от Вас даже может не требоваться никаких действий – просто поставьте на Вашей ЭВМ специальный сервер распространения ключей, и он все только что описанные действия будет выполнять автоматически.

На сегодняшний день не существует единой сети распространения открытых ключей, и дело, как это часто бывает, заключается в войне стандартов. Развиваются несколько независимых систем, но ни одна из них не получила довлеющего превосходства над другими, которое назывется "мировым стандартом".

Необходимо отметить, что цепочка распространения ключей в реальных случаях не очень велика. Обычно она состоит из двух-четырех звеньев. С привлечением к процессу распространения ключей крупных фирм-производителей программных продуктов она становится еще короче. Действительно, если на компакт-диске (не пиратском !) с купленным программным обеспечением уже находится открытый ключ этой фирмы, а сама она имеет крупный рынок сбыта, то цепочка будет состоять либо из одного звена (если ПО этой же фирмы стоит и у Вашего потенциального собеседника), либо из двух (вторым станет какой-нибудь другой гигантский концерн, чье ПО установлено у собеседника – уж между собой-то все крупные компании обменялись ключами электронных подписей достаточно давно). Открытый ключ, подписанный какой-либо третьей стороной, называется заверенным с помощью сертификата. Сертификатом называется информационный пакет, содержащий какой-либо объект (обычно ключ) и электронную подпись, подтверждающую этот объект от имени чьего-либо лица.

Назад | Содержание | Вперед

Обмен ключами по алгоритму Диффи-Хеллмана

Данный параграф посвящен еще одному интересному алгоритму, который достаточно трудно классифицировать. Он помогает обмениваться секретным ключом для симметричных криптосистем, но использует метод, очень похожий на асимметричный алгоритм RSA. Алгоритм назван по фамилиям его создателей Диффи (Diffie) и Хеллмана (Hellman).

Определим круг его возможностей. Предположим, что двум абонентам необходимо провести конфиденциальную переписку, а в их распоряжении нет первоначально оговоренного секретного ключа. Однако, между ними существует канал, защищенный от модификации, то есть данные, передаваемые по нему, могут быть прослушаны, но не изменены (такие условия имеют место довольно часто). В этом случае две стороны могут создать одинаковый секретный ключ, ни разу не передав его по сети, по следующему алгоритму.

Предположим, что обоим абонентам известны некоторые два числа v и n. Они, впрочем, известны и всем остальным заинтересованным лицам. Например, они могут быть просто фиксированно "зашиты" в программное обеспечение. Для того, чтобы создать неизвестный более никому секретный ключ, оба абонента генерируют случайные или псевдослучайные простые числа : первый абонент – число x, второй абонент – число y. Затем первый абонент вычисляет значение (vx) mod n и пересылает его второму, а второй вычисляет (vy) mod n и передает первому. Злоумышленник получает оба этих значения, но модифицировать их (вмешаться в процесс передачи) не может. На втором этапе первый абонент на основе имеющегося у него x и полученного по сети (vy) mod n вычисляет значение (((vy) mod n)x)mod n, а второй абонент на основе имеющегося у него y и полученного по сети (vx) mod n вычисляет значение (((vx) mod n)y)mod n. На самом деле операция возведения в степень переносима через операцию взятия модуля по простому числу (то есть коммутативна в конечном поле), то есть у обоих абонентов получилось одно и то же число : ((vx*y) mod n. Его они и могут использовать в качестве секретного ключа, поскольку здесь злоумышленник снова встретится с проблемой RSA при попытке выяснить по перехваченным (vx) mod n и (vy) mod n сами числа x и y – это очень и очень ресурсоемкая операция, если числа v,n,x,y выбраны достаточно большими.

Необходимо еще раз отметить, что алгоритм Диффи-Хеллмана работает только на линиях связи, надежно защищенных от модификации. Если бы он был применим на любых открытых каналах, то давно снял бы проблему распространения ключей и, возможно, заменил собой всю асимметричную криптографию. Однако, в тех случаях, когда в канале возможна модификация данных, появляется очевидная возможность вклинивания в процесс генерации ключей "злоумышленника-посредника" по той же самой схеме, что и для асимметричной криптографии.

Назад | Содержание | Вперед

Общая схема асимметричной криптосистемы

Общая схема асимметричной криптосистемы изображена на рисунке 1. По структуре она практически идентична симметричной криптосистеме с ключом сеанса.


Рис.1.

Назад | Содержание | Вперед

Характеристики

Тип файла
Документ
Размер
221 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее