Курс МСЗИ3 (1027400), страница 3

Файл №1027400 Курс МСЗИ3 (Лекции по информационной безопасности) 3 страницаКурс МСЗИ3 (1027400) страница 32017-12-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

FOR J = 1 TO N DO

BEGIN

TMP=EnCrypt(H,[G,PSWj]); H'=H XOR TMP;

TMP=EnCrypt(G,[PSWj,TMP]); G'=G XOR TMP;

END;

Key=[Gk,Hk]

Квадратными скобками (X16=[A8,B8]) здесь обозначено простое объединение (склеивание) двух блоков информации равной величины в один – удвоенной разрядности. А в качестве процедуры EnCrypt(X,Key) опять может быть выбран любой стойкий блочный шифр. Как видно из формул, данный алгоритм ориентирован на то, что длина ключа двукратно превышает размер блока криптоалгоритма. А характерной особенностью схемы является тот факт, что строка пароля считывается блоками по половине длины ключа, и каждый блок используется в создании хеш-результата дважды. Таким образом, при длине пароля в 20 символов и необходимости создания 128 битного ключа внутренний цикл хеш-функции повторится 3 раза.


Рис.2.

Назад | Содержание | Вперед

Транспортное кодирование

Поскольку системы шифрования данных часто используются для кодирования текстовой информации : переписки, счетов, платежей электронной коммерции, и при этом криптосистема должна быть абсолютно прозрачной для пользователя, то над выходным потоком криптосистемы часто производится транспортное кодирование, то есть дополнительное кодирование (не шифрование !) информации исключительно для обеспечения совместимости с протоколами передачи данных.

Все дело в том, что на выходе криптосистемы байт может принимать все 256 возможных значений, независимо от того был ли входной поток текстовой информацией или нет. А при передаче почтовых сообщений многие системы ориентированы на то, что допустимые значения байтов текста лежат в более узком диапазоне : все цифры, знаки препинания, алфавит латиницы плюс, возможно, национального языка. Первые 32 символа набора ASCII служат для специальных целей. Для того, чтобы они и некоторые другие служебные символы никогда не появились в выходном потоке используется транспортное кодирование.

Наиболее простой метод состоит в записи каждого байта двумя шестнадцатиричными цифрами-символами. Так байт 252 будет записан двумя символами 'FC'; байт с кодом 26, попадающий на специальный символ CTRL-Z, будет записан двумя допустимыми символами '1A'. Но эта схема очень избыточна : в одном байте передается только 4 бита информации.

На самом деле практически в любой системе коммуникации без проблем можно передавать около 68 символов (латинский алфавит строчный и прописной, цифры и знаки препинания). Из этого следует, что вполне реально создать систему с передачей 6 бит в одном байте (26<68), то есть кодировать 3 байта произвольного содержания 4-мя байтами из исключительно разрешенных (так называемых печатных) символов. Подобная система была разработана и стандартизирована на уровне протоколов сети Интернет – это система Base64 (стандарт RFC1251).

Процесс кодирования преобразует 4 входных символа в виде 24-битной группы, обрабатывая их слева направо. Эти группы затем рассматриваются как 4 соединенные 6-битные группы, каждая из которых транслируется в одиночную цифру алфавита base64. При кодировании base64 входной поток байтов должен быть упорядочен старшими битами вперед.

Каждая 6-битная группа используется как индекс для массива 64-х печатных символов. Символ, на который указывает значение индекса, помещается в выходную строку. Эти символы выбраны так, чтобы быть универсально представимыми и исключают символы, имеющие специальное значение (".", CR, LF).

Алфавит Base64

Значение Код Значение Код Значение Код Значение Код

0 A 17 R 34 i 51 z

1 B 18 S 35 j 52 0

2 C 19 T 36 k 53 1

3 D 20 U 37 l 54 2

4 E 21 V 38 m 55 3

5 F 22 W 39 n 56 4

6 G 23 X 40 o 57 5

7 H 24 Y 41 p 58 6

8 I 25 Z 42 q 59 7

9 J 26 a 43 r 60 8

10 K 27 b 44 s 61 9

11 L 28 c 45 t 62 +

12 M 29 d 46 u 63 /

13 N 30 e 47 v заполнитель =

14 O 31 f 48 w

15 P 32 g 49 x

16 Q 33 h 50 y

Выходной поток (закодированные байты) должен иметь длину строк не более 76 символов. Все признаки перевода строки и другие символы, отсутствующие в таблице 1, должны быть проигнорированы декодером base64. Среди данных в Base64 символы, не перечисленные в табл. 1, переводы строки и т.п. должны говорить об ошибке передачи данных, и, соответственно, программа-декодер должна оповестить пользователя о ней.

Если в хвосте потока кодируемых данных осталось меньше, чем 24 бита, справа добавляются нулевые биты до образования целого числа 6-битных групп. А до конца 24-битной группы может оставаться только от 0 до 3-х недостающих 6-битных групп, вместо каждой из которых ставится символ-заполнитель "=". Поскольку весь входной поток представляет собой целое число 8-битных групп (т.е., просто байтных значений), то возможны лишь следующие случаи:

  1. Входной поток оканчивается ровно 24-битной группой (длина файла кратна 3). В таком случае выходной поток будет оканчиваться четырьмя символами Base64 без каких либо дополнительных символов.

  2. "Хвост" входного потока имеет длину 8 бит. Тогда в конце выходного кода будут два символа Base64, с добавлением двух символов "=".

  3. "Хвост" входного потока имеет длину 16 бит. Тогда в конце выходного будут стоять три символа Base64 и один символ "=".

Так как символ "=" является хвостовым заполнителем, его появление в теле письма может означать только то, что конец данных достигнут. Но опираться на поиск символа "=" для обнаружения конца файла неверно, так как, если число переданных битов кратно 24, то в выходном файле не появится ни одного символа "="

Назад | Содержание | Вперед

Общая схема симметричной криптосистемы

Общая схема симметричной криптосистемы с учетом всех рассмотренных пунктов изображена на рисунке 1.


Рис.1.

Назад | Содержание | Вперед

Асимметричные криптоалгоритмы

2.4.1. Общие сведения об асимметричных криптоалгоритмах
Каждый пользователь асимметричной криптосистемы предварительно создает по определенному алгоритму пару ключей : закрытый и открытый – они будут в дальнейшем использоваться для отправки писем именно ему. Для отправки письма другому абоненту сети необходимо будет воспользоваться именно его открытым ключом.

2.4.2. Алгоритм RSA
Алгорит RSA является классикой асимметричной криптографии. В нем в качестве необратимого преобразования отправки используется возведение целых чисел в большие степени по модулю.

2.4.3. Технологии цифровых подписей
Асимметричная криптография, как оказалось, позволяет очень красиво решать и задачу аутентификации автора сообщения – простым изменением порядка использования открытого и закрытого ключей.

2.4.4. Механизм распространения открытых ключей
Асимметричная криптография сделала еще и достаточно мощный прорыв в технологии первоначального распространения ключей. Если для симметричных криптосистем обязательным был предварительный обмен по закрытому каналу (обычно лично из рук в руки), то теперь появились совершенно новые способы для этого.

2.4.5. Обмен ключами по алгоритму Диффи-Хеллмана
Метод Диффи-Хеллмана использует алгоритм, подобный алгоритму RSA, для первоначального обмена ключами в симметричных криптосистемах по открытому каналу, но только такому, в котором невозможна фальсификация сообщений.

Назад | Содержание | Вперед

Общие сведения об асимметричных криптоалгоритмах

Симметричные криптосистемы, рассмотренные нами в предыдущих главах, несмотря на множество преимуществ, обладают одним серьезным недостатком, о котором Вы, наверное, еще не задумывались. Связан он с ситуацией, когда общение между собой производят не три-четыре человека, а сотни и тысячи людей. В этом случае для каждой пары, переписывающейся между собой, необходимо создавать свой секретный симметричный ключ. Это в итоге приводит к существованию в системе из N пользователей N2/2 ключей. А это уже очень "приличное" число. Кроме того, при нарушении конфиденциальности какой-либо рабочей станции злоумышленник получает доступ ко всем ключам этого пользователя и может отправлять, якобы от его имени, сообщения всем абонентам, с которыми "жертва" вела переписку.

Своебразным решением этой проблемы явилось появление асимметричной криптографии. Эта область криптографии очень молода по сравнению с другими представителями. Первая схема, имевшая прикладную значимость, была предложена всего около 20 лет назад. Но за это время асимметричная криптография превратилась в одно из основных направлений криптологии, и используется в современном мире также часто, как и симметричные схемы.

Асимметричная криптография изначально задумана как средство передачи сообщений от одного объекта к другому (а не для конфиденциального хранения информации, которое обеспечивают только симметричные алгоритмы). Поэтому дальнейшее объяснение мы будем вести в терминах "отправитель" – лицо, шифруюшее, а затем отпраляющее информацию по незащищенному каналу и "получатель" – лицо, принимающее и восстанавливающее информацию в ее исходном виде. Основная идея асимметричных криптоалгоритмов состоит в том, что для шифрования сообщения используется один ключ, а при дешифровании – другой.

Кроме того, процедура шифрования выбрана так, что она необратима даже по известному ключу шифрования – это второе необходимое условие асимметричной криптографии. То есть, зная ключ шифрования и зашифрованный текст, невозможно восстановить исходное сообщение – прочесть его можно только с помощью второго ключа – ключа дешифрования. А раз так, то ключ шифрования для отправки писем какому-либо лицу можно вообще не скрывать – зная его все равно невозможно прочесть зашифрованное сообщение. Поэтому, ключ шифрования называют в асимметричных системах "открытым ключом", а вот ключ дешифрования получателю сообщений необходимо держать в секрете – он называется "закрытым ключом". Напрашивается вопрос : "Почему, зная открытый ключ, нельзя вычислить закрытый ключ ?" – это третье необходимое условие асимметричной криптографии – алгоритмы шифрования и дешифрования создаются так, чтобы зная открытый ключ, невозможно вычислить закрытый ключ.

В целом система переписки при использовании асимметричного шифрования выглядит следующим образом. Для каждого из N абонентов, ведущих переписку, выбрана своя пара ключей : "открытый" Ej и "закрытый" Dj, где j – номер абонента. Все открытые ключи известны всем пользователям сети, каждый закрытый ключ, наоборот, хранится только у того абонента, которому он принадлежит. Если абонент, скажем под номером 7, собирается передать информацию абоненту под номером 9, он шифрует данные ключом шифрования E9 и отправляет ее абоненту 9. Несмотря на то, что все пользователи сети знают ключ E9 и, возможно, имеют доступ к каналу, по которому идет зашифрованное послание, они не могут прочесть исходный текст, так как процедура шифрования необратима по открытому ключу. И только абонент №9, получив послание, производит над ним преобразование с помощью известного только ему ключа D9 и восстанавливает текст послания. Заметьте, что если сообщение нужно отправить в противоположном направлении (от абонента 9 к абоненту 7), то нужно будет использовать уже другую пару ключей (для шифрования ключ E7, а для дешифрования – ключ D7).

Как мы видим, во-первых, в асимметричных системах количество существующих ключей связано с количеством абонентов линейно (в системе из N пользователей используются 2*N ключей), а не квадратично, как в симметричных системах. Во-вторых, при нарушении конфиденциальности k-ой рабочей станции злоумышленник узнает только ключ Dk : это позволяет ему читать все сообщения, приходящие абоненту k, но не позволяет вывадавать себя за него при отправке писем. Кроме этого, асимметричные криптосистемы обладают еще несколькими очень интересными возможностями, которые мы рассмотрим через несколько разделов.

Назад | Содержание | Вперед

Алгоритм RSA

Алгоритм RSA стоит у истоков асимметричной криптографии. Он был предложен тремя исседователями-математиками Рональдом Ривестом (R.Rivest) , Ади Шамиром (A.Shamir) и Леонардом Адльманом (L.Adleman) в 1977-78 годах.

Первым этапом любого асимметричного алгоритма является создание пары ключей : открытого и закрытого и распространение открытого ключа "по всему миру". Для алгоритма RSA этап создания ключей состоит из следующих операций :

  1. Выбираются два простых (!) числа p и q

  2. Вычисляется их произведение n(=p*q)

  3. Выбирается произвольное число e (e<n), такое, что НОД(e,(p-1)(q-1))=1, то есть e должно быть взаимно простым с числом (p-1)(q-1).

  4. Методом Евклида решается в целых числах (!) уравнение e*d+(p-1)(q-1)*y=1. Здесь неизвестными являются переменные d и y – метод Евклида как раз и находит множество пар (d,y), каждая из которых является решением уравнения в целых числах.

  5. Два числа (e,n) – публикуются как открытый ключ.

  6. Число d хранится в строжайшем секрете – это и есть закрытый ключ, который позволит читать все послания, зашифрованные с помощью пары чисел (e,n).

Как же производится собственно шифрование с помощью этих чисел :

  1. Отправитель разбивает свое сообщение на блоки, равные k=[log2(n)] бит, где квадратные скобки обозначают взятие целой части от дробного числа.

  2. Подобный блок, как Вы знаете, может быть интерпретирован как число из диапазона (0;2k-1). Для каждого такого числа (назовем его mi) вычисляется выражение ci=((mi)e)mod n. Блоки ci и есть зашифрованное сообщение Их можно спокойно передавать по открытому каналу, поскольку.операция возведения в степень по модулю простого числа, является необратимой математической задачей. Обратная ей задача носит название "логарифмирование в конечном поле" и является на несколько порядков более сложной задачей. То есть даже если злоумышленник знает числа e и n, то по ci прочесть исходные сообщения mi он не может никак, кроме как полным перебором mi.

А вот на приемной стороне процесс дешифрования все же возможен, и поможет нам в этом хранимое в секрете число d. Достаточно давно была доказана теорема Эйлера, частный случай которой утвержает, что если число n представимо в виде двух простых чисел p и q, то для любого x имеет место равенство (x(p-1)(q-1))mod n = 1. Для дешифрования RSA-сообщений воспользуемся этой формулой. Возведем обе ее части в степень (-y) : (x(-y)(p-1)(q-1))mod n = 1(-y) = 1. Теперь умножим обе ее части на x : (x(-y)(p-1)(q-1)+1)mod n = 1*x = x.

А теперь вспомним как мы создавали открытый и закрытый ключи. Мы подбирали с помощью алгоритма Евклида d такое, что e*d+(p-1)(q-1)*y=1, то есть e*d=(-y)(p-1)(q-1)+1. А следовательно в последнем выражении предыдущего абзаца мы можем заменить показатель степени на число (e*d). Получаем (xe*d)mod n = x. То есть для того чтобы прочесть сообщение ci=((mi)e)mod n достаточно возвести его в степень d по модулю m : ((ci)d)mod n = ((mi)e*d)mod n = mi.

На самом деле операции возведения в степень больших чисел достаточно трудоемки для современных процессоров, даже если они производятся по оптимизированным по времени алгоритмам. Поэтому обычно весь текст сообщения кодируется обычным блочным шифром (намного более быстрым), но с использованием ключа сеанса, а вот сам ключ сеанса шифруется как раз асимметричным алгоритмом с помощью открытого ключа получателя и помещается в начало файла.

Характеристики

Тип файла
Документ
Размер
221 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее