Айвазян С.А., Бухшгабер В.М., Енюков И.С., Мешалкин Л.Д. - Прикладная статистика (1027378)
Текст из файла
ББК 22.172 П76 Рецензенты: Б. Г. Миркин, Е. Г. Ясин Книга логически завершает справочные издания «Прикладная статистика: Основы моделирования и первичная обработка данных» (!983 г.) и «Прикладная статистика: Исследование зависимостей» (1983 г.). Рассматриваются задачи классификации объектов, сипзкеиия размерности Большое внимание Бделиется разведочному статистическому анализ>.
Для специалистов, нримеияющих методы анализа данных 1702060000 — 036 П 100 — 88 010(01) — 80 ББК 22.172 15 В)ч( 5 — 279 — 00054 — Х © Издательство «Фппансы п статистика», !080 Прикладная статистика: Классификация и сниП75 жение размерности; Справ. изд. / С. А. Айвазян, В. М. Вухштабер, И, С.
Енюков, Л, Д. Мешалкин; Под ред. С. А. Айвазяна.— Мд Финансы и статистика, 1989. — 607 сз ил. 15 В)ч 5 — 279 — 00054 — Х. ПРЕДИСЛОВИЕ Данная книга является третьей в трехтомном справочном издании, задуманном и реализуемом нашим авторским коллективом. В первом томе (Айвазян С.
А., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: Основы моделирования и первичная обработка данных. — Мл Финансы и статистика, 1983. — 4?2 с.) дается, в частности, определение прикладной статистики (см. с. !9) как самостоятельной научной дисциплины, разрабатывающей и систематизирующей понятия, приемы, математические методы и модели, предназначенные для организации сбора, стандартной записи, систематизации и обработки статистических данных с целью их удобного представления, интерпретации и получения научных и практических выводов. Втоой том (Айвазян С. А., Енюков И. С., Мешалкин Л.
Д. рикладная статистика: Исследование зависимостей. — Мл Финансы и статистика, 1985.— 488 с.) посвящен описанию методов анализа структуры, тесноты и конкретного вида статистических связей между исследуемыми признаками разной природы — количественными, ординальными, номинальными (категоризованными), а также обзору программного обеспечения этих методов. В числе описанных методов -- корреляционный, регрессионный, дисперсионный, ковариационный анализ, элементы анализа временных рядов и систем одновременных эконометрических уравнений. При минимальной вероятностно-статистической подготовке читателя, обеспечиваемой, например, обычным вероятностно-статистическим курсом экономического или технического вуза, данный (третий) том пригоден для полностью автономногочтения (т.е.
его понимание не требует знания каких-либо специальных сведений, содержащихся в первых двух томах). Он посвящен актуальнейшим аспектам общей проблемы статистического анализа данных — задачам классификаиии объектов, снижения размерности исследуемого признакового пространства и статистическим методам их решения. Лишь в последние два-три десятилетия, когда определенного уровня достигли вычислительная база исследований и теоретические разработки многомерного статистического анализа, главной проблемой теории и практики классификации и снижения размерности стало развитие достаточно изощренного и эффективного в приложениях математического аппарата.
На этом пути уже имеются серьезные достижения, однако до сих пор в отечественной, да пожалуй, и в мировой специальной литературе не было издания, в котором эти достижения были бы достаточно полно просистематизированы, выстроены в общую методологическую схему, снабжены необходимыми практическими рекомендациями (включая вопросы преодоления вычислительных трудностей и использования подходящего типового программного обеспечения). Авторы предлагаемой вниманию читателей книги ставили перед собой именно такую целевую установку. При этом изложение построено таким образом, что уже знакомство с <Введением» должно позволить читателю составить достаточно ясное представление о сущности, роли и назначении статистических методов классификации и снижения размерности, понять их разноаспектную типологизацию, узнать о содержании и логических связях всех частей книги (включая основные постановки задач и «адреса» их решений в книге).
Следует отметить в общем замысле и в содержании книги один аспект, который выделяет ее среди другой литературы данного профиля. Речь идет о том специальном и неослабном внимании, которое уделяется в книге реализации важнейшего, узлового этапа всякого прикладного исследования, использующего математические методы и модели,— этапа дазггдочного статистического анализа.
Как известно, назначение этого этапа — тщательный предварительный анализ, своеобразное «прощупывание» исходных статистических данных с целью выявления их вероятностной и геометрической природы, формирования и верификации тех или иных рабочих гипотез, касающихся этого аспекта проблемы.
Принятые на этом этапе рабочие исходные допущения о математической модели реального механизма генерирования анализируемых данных являются определяющими в выборе необходимого математического инструментария, а значит, — и в успехе всего статистического исследования. Однако, к сожалению, в существующей практике прикладных статистических исследований этот важнейший этап чаще всего либо полностью игнорируется, либо реализуется весьма поверхностно. И одна из главных причин этого— почти полное отсутствие необходимой научно-методологи- ческой литературы (изданный много лет назад перевод книги Дж.
Тычки «Разведочный анализ», в свое время весьма полезный, ныне приходится отнести к устаревшим источникам информации). В данной же книге эти вопросы занимают центральное место: так или иначе с ними связано большинство глав (кроме гл. 1 — 4), а непосредственно этой проблематике посвящен специальный раздел 1Ч (гл. 18 — 21). Авторы старались сопровождать изложение этих важных вопросов подробным описанием существа, роли и научно-прикладного значения результатов, полученных отечественными специалистами (в сравнении с результатамн зарубежных исследователей). Книга состоит из 4 разделов и 21 главы.
Раздел 1 (гл. 1 — 4) посвящен задачам классификации в ситуации, когда исследователь обладает так называемыми обучающими выборками (т. е. «классификации с учителем»). Математический аппарат, используемый при решении подобных задач, объединяется в разделе многомерного статистического анализа, именуемого дискримипантпый анализ. Раздел П (гл. 5 — 12) посвящен задачам «классификации без учителя» (исследователь не располагает обучающими выборками). Математический аппарат решения таких задач включает в себя методы кластер-анализа, или автоматической классификации (в том числе иерархические процедуры классификации), а также статистические методы расщепления смесей вероятностных распределений.
Раздел 111 (гл. 13 — 17) содержит описание наиболее разработанных и эффективных методов снижения размерности исследуемого признакового пространства и отбора наиболее информативных показателей. Среди представленных здесь методов — главные компоненты, факторный анализ, метод экстремальной группировки параметров, многомерное шкалнрование, экспертно-статистический метод построения интегрального (латентного) показателя, методы нелинейного отображения многомерных данных в пространства низкой размерности по различным критериям, анализ соответствий в случае неколичественных переменных. Раздел 1Ч (гл. 18 — 21) объединяет в себе описание методов так называемого разведочного статистического анализа и одновременно вопросов вычислительной и программной реализации представленных в книге методов, включая обзор по соответствующему программному обеспечению ЭВМ (в том числе персональных ЭВМ) и краткое освещение проблем интеллектуализации статистического программного обеспечения.
Методы разведочного (предмодельного) статнстн- ческого анализа данных (и, в частности, методы целенаправленного проецирования многомерных наблюдений) направлены на «прощупывание» геометрической и вероятностной природы обрабатываемых данных с целью формирования адекватных реальности рабочих исходных допущений, на которых строится дальнейшее исследование. Эти методы как один из инструментов разведочного анализа являются естественным и необходимым дополнением к методам первичнои статистической обработки, описанным в гл. 10, 11 первого тома данного издания. Сделанный в книге особый акцент на этих методах обусловлен тем обстоятельством, что в существовавшей до последнего времени практике статистических исследований этапу предмодельного анализа, методам выявления геометрической и вероятностной природы обрабатываемых данных, различным приемам тестирования гипотетических структур используемых моделей, как правило, не уделялось должного внимания.
В книгу включен ряд оригинальных результатов исследований авторов, а также результаты, ранее не публиковавшиеся в отечественной литературе: общая теория автоматической классификации (гл. 10), экспертно-статистический метод построения единого сводного показателя эффективности (гл. 15), некоторые приемы томографнческого анализа и целенаправленного проецирования многомерных данных (гл. 18 — 20), методы классификации при наличии элементов обучения (гл. 1 1), методы оцифровки неколичественных переменных (гл. 17).
Характеристики
Тип файла DJVU
Этот формат был создан для хранения отсканированных страниц книг в большом количестве. DJVU отлично справился с поставленной задачей, но увеличение места на всех устройствах позволили использовать вместо этого формата всё тот же PDF, хоть PDF занимает заметно больше места.
Даже здесь на студизбе мы конвертируем все файлы DJVU в PDF, чтобы Вам не пришлось думать о том, какой программой открыть ту или иную книгу.