Главная » Просмотр файлов » Автореферат

Автореферат (1025867), страница 2

Файл №1025867 Автореферат (Разработка метода расчета сложных разветвленных пневматических систем) 2 страницаАвтореферат (1025867) страница 22017-12-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Патанкара, Г.И. Марчука иА.А. Самарского. В данном случае произвольная расчетная областьразбивается на подобласти или контрольные объемы. Построение расчетнойсхемы в данном случае осуществляется таким образом, чтобы центрукаждого контрольного объема соответствовал узел системы, а граниконтрольных объемов соответствовали серединам связей (каналов,трубопроводов) как представлено на Рис. 1. При этом техническиехарактеристики (диаметры трубопроводов, размеры сечений каналов, длиныи гидравлические сопротивления и коэффициенты расхода) относятся ксвязям, а подвод или отбор массы производится только в узлах.Дискретные аналоги уравнений неразрывности, сохранения движения иэнергии получаются их интегрированием по каждому контрольному объему(КО), на который разбита расчетная область (Рис.

1).При построении дискретного аналога проведена линеаризацияуравнения сохранения движения. При записи дискретного аналога совершенпереход от конвективных потоков F к среднеинтегральной скорости в связи.Таким образом, дискретный аналог уравнения движения представляется вследующем виде:2∆ − (4) = −= − ∆4а)б)Рис. 1. Контрольные объемы для уравнения движения (а) и уравненийнеразрывности и энергии (б)где коэффициент дискретного аналога уравнения движения:2∆ =(5) где , , , – индексы, относящиеся к центру КО; ∆ – длинагидравлической связи, м , , – индексы, относящиеся к грани КО; –давление, Па; – среднеинтегральная скорость в связи, м/с; –коэффициент гидравлического сопротивления.Дискретный аналог уравнения неразрывности записывается вследующем виде:(6) = + + + где коэффициенты дискретного аналога уравнения неразрывности , , , , определяются следующим образом: =; =; =; = ; = + + (7)где , , –площади поперечных сечений связей , , соответственно, м2; , , – коэффициенты дискретного аналога уравнения движения; , , – длины связей, м; – источниковый член, кг/с,Такой подход позволяет отказаться от необходимости выделенияконтуров, а решение сводится к решению единого поля давления сразу длявсей расчетной области при моделировании разветвленных пневматическихсистем.Дискретный аналог уравнения энергии в общем виде записывается вследующей стандартной форме:(8) = + + + где(9) = (10) = ∆ + + (11) = 0(12) = 0(13) = ∆5(14) =∆ (15) =+ ∆где , – источниковые члены уравнений энергии (учитывающийадиабатическое расширение и дополнительный источники соответственно); , , – конвективные потоки через грани , , соответственно; , , – значения удельной теплоемкости в точках e, w и s соответственно,Дж/кг·К; – температура поверхности стенки на участке связи,ассоциированном с КО для узла P, K; – площадь стенок связей, м2; –коэффициент теплоотдачи, Вт/м2К.Для случая, когда на боковой поверхности канала заданы граничныеусловия 2-го рода:(16) = 0 (17) =+ ∆Согласно допущениям для сжимаемой среды:∆∆∆(18) = + + ∆ ∆ ∆где ∆ = ∆ + ∆ + ∆ = ∆ – объем, ассоциированный с узлом P, м3;∆ , ∆ , ∆ – части контрольного объема, ассоциированные со связями w, sи e соответственно, м3.Для несжимаемой среды:(19) = 0Система уравнений (1)-(3) дополняется уравнением состояния газа.

Вобщем случае уравнение состояние рабочей среды описывается, например,уравнением состояния идеального газа с введением коэффициента zсжимаемости: = (20)Для численного решения системы уравнений дискретных аналогов (4),(6), (8) использована итерационная процедура:1. Вводятся предполагаемые значения скорости для каждой связи, давления итемпературы в каждом узле.2. Определяются значения плотности в узлах и серединах связей поуравнению состояния (20).3.

Рассчитываются значения коэффициентов дискретного аналога уравненияколичества движения по зависимостям (5).4. Рассчитываются коэффициенты дискретного аналога поля давления (7), иопределяются поля давления и градиентов давления в узлах расчетной сетки.Определяются массовые потоки через грани КО (середины связей).5. Рассчитываются значения скорости в серединах связей (4), используякоэффициенты дискретного аналога уравнения движения и полученныйградиент поля давления.66. Определяются коэффициенты дискретных аналогов (9)-(15) уравненияэнергии.7. Рассчитываются значения температур в узлах расчетной сетки издискретного аналога (8).8.

Возврат к п.2 до тех пор, пока не будет достигнут заданный критерийсходимости (количество итераций и/или заданное значение невязки).По завершению расчета создается файл результатов, в которомзаписаны данные о давлении, температуре и плотности в каждом узле, атакже о расходах и подводимом/отводимом тепловом потоке в каждой связи.Программный комплекс (ПК) «CVM-1D» построен на основемодульного принципа на языке программирования высокого уровня Fortran.Структурная схема программного комплекса «CVM-1D» представлена наРис.

2. В блоке пользователя (USER) задаются условия однозначности(технические характеристики рассматриваемой системы и граничныеусловия), условия окончания расчета и формат вывода данных. Впрограммном блоке (SOLVER) происходит сборка дискретных аналогов иитерационное решение системы дифференциальных уравнений. Блокпользователя состоит из следующих подпрограмм: START, GRID, DENSE,GAMSOR, BOUND, OUTPUT. Программный блок состоит из подпрограммSETUP1, SETUP2, SETUP3 и вспомогательных подпрограмм.Рис. 2. Структурная схема программного комплексаТаким образом, разработанный одномерный метод расчета позволяетучитывать изменение расхода среды, вызванное сжимаемостью, изменениедиаметра и наличие источников/стоков рабочей среды в узлах системы, атакже теплообмен с внешней средой, для любого количества разветвлений иконтуров, что делает этот метод расчета сложных разветвленных системуниверсальным.7В третьей главе проведена верификация разработанного метода ипрограммного комплекса «CVM-1D».

В главе представлены характерныепримеры применения метода для решения задачи потокораспределения сучетом и без учета теплообмена для разветвленных пневматических систем.В качестве тестовых рассмотрены различные изотермические инеизотермическиезадачи,имеющиеаналитическоерешение,опубликованные в открытой печати, а также проведено сравнение срезультатами, полученными с использованием сертифицированногопрограммного обеспечения.Для ПС с изотермическим течением и малыми перепадами давлений всистемах (например, городские газовые магистрали низкого давления)физические свойства газа (плотность и вязкость) принимаются постоянными.В данном случае не учитывается уравнение энергии (3).

Таким образом, дляизотермических систем сравнение результатов и скорости сходимости можнопроводить с широко распространенными «увязочными» методами (методыконтурных расходов, узловых давлений и др.) и методами, основанными наглобальном градиентном алгоритме расчета разветвленных систем,предназначенными для моделирования потокораспределения сред спостоянной плотностью.Сравнение результатов расчетов с помощью ПК «CVM-1D» приналичии линейного сопротивления трения проведено на расчетной схеме,состоящей из 10 связей и 8 узлов (Рис. 3а).

В первой связи задано постояннопостоянное давление, а в узлах 2 и 3 заданы сток и подвод средысоответственно. При этом на всех связях имеется линейное сопротивлениетрения. В результате расчета требовалось определить объемные расходы длякаждого канала системы.1E+0МКО1E-1МКРНевязка1E-21E-31E-41E-51E-61E-702468Номер итерации101214а)б)Рис. 3. Система с постоянными коэффициентами сопротивления:а) расчетная схема; б) скорость сходимости:МКО – расчет с применением ПК «CVM-1D»; МКР – расчет с помощьюметода контурных расходов816Сравнение полученных результатов расчета проводилось сопубликованным решением методом контурных расходов (МКР), описанномв работах В.Я. Хасилева и А.П.

Меренкова. Отклонение составило менее0,01%. Сравнение скорости сходимости представлено на Рис. 3б. Как видноиз рисунка, скорость сходимости МКО выше, чем у метода контурныхрасходов.Сравнение результатов расчета и скорости сходимости для систем снелинейным сопротивлением трения и использовании уравнения ДарсиВейсбаха проводилось на пневмогидравлической системе, представленной наРис.

4. Расчетная схема состоит из 18 связей (протяженных трубопроводов), вкоторых происходит распределенное падение давления, и из 13 узлов, 12 изкоторых являются потребителями. Первый узел является источникомпостоянного давления. Зависимость коэффициента гидравлическогосопротивления трения для связей, определялась для всего диапазона чиселРейнольдса по уравнению Блазиуса для ламинарного режима и покорреляциям Колбрука - для турбулентного режима. Сравнение результатов,полученных при помощи МКО, проводилось с опубликованными данными,полученными с помощью глобального градиентного алгоритма.Скорость сходимости МКО представлена на Рис. 4б и несколькоуступает к скорости сходимости глобального градиентного алгоритма.1E+0GGAМКОНевязка1E-21E-41E-61E-802468101214Номер итерацииа)б)Рис. 4.

Тестовая задача: а) Расчетная схема; б) скорость сходимости:МКО– расчет с применением ПК «CVM-1D»; GGA– расчет с помощьюглобальный градиентный алгоритм;В качестве примера проведено сравнение результатов расчета сприменением разработанного метода и ПК «CVM-1D» части газовоймагистрали низкого давления. Расчетная схема представлена на Рис. 5а исостоит из 125 узлов и 137 связей. В первом узле поддерживается постоянноедавление, а во всех остальных имеются потребители с постоянным расходомсреды.

Результаты расчета распределения давления по узлам иопубликованные результаты представлены на Рис. 5б. Как видно из рисунка,среднее расхождение результатов составило менее 1%.9Избыточное давление, 102 , Па100Референсные данные90Расчет МКО8070605002550Номер узла75100125а)б)Рис. 5. Пример применения: а) расчетная схема газовой магистрали;б) распределение узловых давлений в системеВо многих случаях «увязочные» методы и глобальный градиентныйалгоритм могут не обеспечивать численной сходимости итерационногопроцесса, особенно при увеличении размерности задачи.

Данные проблемыначинают сказываться при наличии 3-х и более вложенных контуров. В связис этим было проведено тестирование по определению влияния размерностизадачи на скорость сходимости и стабильность итерационного процессаМКО.В связи с отсутствием необходимых данных по системам большойразмерности, а так же отсутствием стандартных методик тестированияметодов расчета потокораспределения, предложена методика создания«искусственных» тестовых задач. Предложенная методика тестированиязадач большой размерности основана на создании «искусственных» задачпри помощи стандартных задач CFD моделирования.Расчетная схема строится таким образом, чтобы центру контрольногообъема сетки для CFD расчета соответствовал узел расчетной схемы, а граньконтрольного объема соответствовала середине связи.

Характеристики

Список файлов диссертации

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6361
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее