Главная » Просмотр файлов » Автореферат

Автореферат (1025249), страница 3

Файл №1025249 Автореферат (Математическое моделирование служебных бортовых систем космических аппаратов в задачах управления полётом) 3 страницаАвтореферат (1025249) страница 32017-12-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

После выполнения нескольких итерацийкоррекции, когда невязка становится достаточно малой, алгоритм производит численное интегрирование: увеличивает значения фазовых переменныхпропорционально найденным значениям их производных. Работа этого алгоритма основана на программных реализациях методов численного решениянелинейных алгебраических уравнений и численного интегрирования.На основе расчетного алгоритма была разработана компьютерная программа, выполняющая подготовку исходных данных и расчет эволюции ВСИС. Для решения системы алгебраических уравнений в различных задачахприменены библиотечные реализации квазиньютоновского метода с оценкойматрицы Якоби по алгоритму Бройдена-Флетчера-Гольдфарба-Шенно и гибридного метода Пауэлла, для численного интегрирования — авторские реализации обратного метода Эйлера и метода Рунге-Кутты 4-го порядка.В третьей главе диссертации описано применение нового варианта метода и разработанного комплекса программ для моделирования двигательнойустановки (ДУ) и СОТР космических аппаратов.В разделе 1 третьей главы приведено описание математических моделей физических явлений, существенных для функционирования ДУ и СОТР:течения тока по электрическим цепям, контактного и лучистого теплообмена,течения жидкостей и газов по магистралям и их взаимного влияния: тепломассообмена и теплового действия электрического тока.Компьютерная модель каждого из перечисленных физических явленийпредставлена в виде совокупности фрагментов — узлов-аккумуляторов (УА)8и проводников.

Как и в методе физических аналогий, все фрагменты, моделирующие явления одной и той же физической природы, образуют граф,узлами которого являются УА, а ребрами — проводники.Для моделирования течения электрического тока применены известныеправила расчета электрических цепей:∑︁ = 0;(3)(︀)︀ = ,1 − ,2 ,∈Eгде — сила тока через -й проводник, — проводимость -го проводника,,1 , ,1 — потенциалы узлов, соединенных -м проводником, E — множествономеров проводников, присоединенных к -му узлу.Для моделирования теплообмена использованы законы сохранения энергии, теплопроводности Фурье и излучения черного тела Стефана-Больцмана,учтен взаимный лучистый теплообмен массивных тел:∑︁∈K +∑︁ − ˙ = 0;(4)∈T = κ (,1 − ,2 ); =(︁0 ,1 ,2 4,1−4,2)︁,(5)где , — потоки теплоты, обусловленные, соответственно, -м тепловымпроводником и -й оптической связью, , — теплоемкость и температура-го теплового аккумулятора, K — множество номеров тепловых проводников, присоединенных к -му тепловому аккумулятору, T — множество номеров оптических связей, присоединенных к -му тепловому аккумулятору, κ —коэффициент теплообмена -го теплового проводника, ,1 , ,2 — температуры тепловых аккумуляторов, соединенных -м тепловым проводником, 0 —постоянная Стефана-Больцмана, ,1 , ,2 , , ,1 , ,2 — степень черноты,взаимная поверхность излучения, и температуры пары тепловых аккумуляторов, соединенных -й оптической связью.Для моделирования теплового действия электрического тока использована следующая формулировка закона Джоуля-Ленца:(︀)︀ = · ,1 − ,2 ,(6)где — тепловая энергия, выделяемая протекающим по -му проводникуэлектрическим током за единицу времени, — сила тока в -м проводнике,,1 , ,2 — потенциалы узлов, соединенных -м проводником.Для имитации течения жидких и газообразных веществ по магистралямИС с учетом тепломассообмена в диссертации разработана математическаямодель этих явлений.

Рассмотрено ламинарное течение несжимаемой жидкости и совершенного газа по длинной цилиндрической трубе под действиемградиента давления. Получено приближенное решение системы дифференциальных уравнений в частных производных: уравнений Навье-Стокса, неразрывности и состояния вещества.9Для описания течения несжимаемой жидкости было получено решение: ¯ (︀ ,1)︀− ,2 ;∆ = −(︀ · · (︀¯ · ¯˙ ; )︀)︀¯ = ⋆ · 1 − ¯ −{︁ ⋆ ;¯ = −,1 = · (¯ −ΔΔ¯ − 2 ≥ 02 ) · {︁,1 , ⃒⃒ΔΔ′¯ + 2 > 0 ⃒2 ) · , ,2 = · (¯ +− · ¯ · ¯˙ + ,1 + ,2 + = 0; ¯ ′ = ¯ + · ¯˙ ,2¯⃒⃒ ′⃒ , ¯ −,2 , ¯ +Δ2Δ2}︁<0 ;}︁≤0 ;(7)где ,1 , ,1 , ,2 , ,2 — давление и температура жидкости в узлах, соединенных -й трубой, , — коэффициенты динамической вязкости и объемного расширения жидкости, — геометрический коэффициент проводимости,зависящий от длины и диаметра -й трубы, ¯ , ¯ , ¯ — средние плотность,температура и расход жидкости в -й трубе, ∆ — разность между входными выходным расходом в -ю трубу, обусловленная тепловым расширениемжидкости, — объем -й трубы, ⋆ , ⋆ — константы, определяющие тепловое расширение жидкости, ,1 , ,2 — изменение внутренней энергии жидкости в трубе, обусловленное массообменом, — теплоемкость единицы массыжидкости, — суммарная тепловая энергия, подводимая к -й трубе, ′ —температура жидкости, истекающей из -й трубы.Для политропного течения совершенного газа было получено решение:(︁)︁ (︁)︁1+1/ℎ 21+2/ℎ −1 ℎ (ℎ +2)· 1 − ;¯ = − · (ℎ +1)2 · ,1 ¯ · 1 − ,2 = ;,1¯∆ = − · ¯ · ¯˙ ;(︁)︁ (︁)︁,1 2+1/ℎ1+1/ℎ −1ℎ +1¯ = ¯ · · 2ℎ +1 · 1 − · 1 − ;⃒{︁}︁⃒ ′ΔΔΔ,1 = ℎ · (¯ − 2 ) · ,1 , ¯ − 2 ≥ 0 ⃒ , ¯ − 2 < 0 ;⃒{︁⃒ΔΔ′,2 = ℎ · (¯ + 2 ) · , ¯ + 2 > 0 ⃒ ,2 , ¯ +−ℎ · ¯ · ¯˙ +,2 +)︂ = 0;(︂ ,1 + 1−1/ℎ1−2ℎ +1′ = ¯ · ℎ+2 · 1 −;2+1/ℎℎ =ℎ −ℎ −1 ,Δ2(8)}︁≤0 ;1−где ℎ — показатель политропы для -й трубы, — коэффициент динамической вязкости газа, — молярная масса газа, — универсальная газовая постоянная, ℎ — теплоемкость единицы массы газа при политропном процессев -й трубе, , — теплоемкость единицы массы газа при постоянном давлении и объеме.

Остальные обозначения аналогичны (7).10Для моделирования узлов пневмо- и гидромагистралей в приближении сосредоточенных параметров использованы уравнения неразрывности и смешивания вещества в узле (время смешивания вещества с разными плотностямии температурами в узле принято пренебрежимо малым):[︂(︁ )︁ ˙ ˙ + ∑︀+(︁]︂)︁∑︀˙ + = 0;∈Hmax( , 0) ·(′− ) − = 0,(9)∈Hгде — объем -го узла, , , — давление, плотность и температура вещества в -м узле, H — множество номеров труб, присоединенных к -му узлу, , ′ — массовый расход и температура вещества, втекающего в -й узел из -й трубы, — теплота, подводимая к -му узлу за единицу времени, — массовая теплоемкость вещества, для газа — в политропном процессе.

Частныепроизводные плотности получены из уравнений состояния вещества.На основании приведенных выше уравнений были разработаны фрагменты — программные модули, служащие для моделирования различных физических явлений. В составе фрагментов реализованы программные функции,вычисляющие невязки между фазовыми переменными и их производными.Для моделирования электрических схем разработаны фрагменты «электрический узел» (Эу) и «электрический проводник» (Эп).

Программнаяфункция для Эп, соединяющего ,1 -й и ,2 -й узлы, вычисляет силу тока из (3), программная функция для -го Эу вычисляет невязку между токами ∀ ∈ E в присоединенных Эп.Для моделирования теплообмена разработаны фрагменты «тепловой аккумулятор» (Та), «контактный тепловой проводник» (Тк) и «радиационныйтепловой проводник» (Тр). Программная функция для Та вычисляет невязку в тепловом балансе (4), программные функции для Тк и Тр вычисляют,соответственно, величины и из (5).На основании систем уравнений (7)–(9) разработаны фрагменты для описания течения несжимаемой жидкости и совершенного газа по магистралямИС.

Одна группа фрагментов описывает свойства веществ, жидкостей (Вж)или газов (Вг), вторая — элементов магистралей, узлов (Гу) и труб (Гп), третья — параметров емкости (Оо). Были использованы разработанные ранеефрагменты Та. Модели конкретных ОССД магистрали предложено представлять в виде суперпозиции перечисленных фрагментов (Рис. 4).+Вж|Вгописаниевещества+ТаописаниетеплообменаОоописаниеемкости длявеществаГу|Гп+описаниетрубопроводаГу|Гп+Вж|Вгизотермическое течениемежду малыми объемамиГу|Гп+Вж|Вг+Татечение с учетом нагревамежду малыми объемамиГу|Гп+Вж|Вг+Ооизотермическое течениемежду конечными объемамиГу|Гп+Вж|Вг+Оо+Та течение с учетом нагревамежду конечными объемамиРис. 4.

Варианты моделирования течения жидкости и газа11В разделе 2 третьей главы приведено описание модели двигательной(б )(а )(в )1 2⋆Начальный наддув БО и БГ. Штатная работа: (а ) — давление в баллоненаддува БН БН (), (б ) — давленияв БО и БГ БО (), БГ (). Негерметичность РД: (в ) — БН (), (г ) —БО (), БГ (). 1 , 2 — моменты начала и окончания наддува, 1 — давление настройки РД, 2 — давление, покоторому автоматика ДУ закрываетЭКН, ⋆ — момент времени отключения наддува автоматикойln(КОо )(г )21БНБО , БГустановки, предназначенной для сообщения космическому аппарату импульса в соответствии с программой полета за счет реактивной тяги, образуемой при сгорании топливной пары.

КА оборудован двигателями малой тяги(ДМТ) и маршевым двигателем (МД). Схема ДУ приведена на Рис. 5.Компоненты топлива приняты несжимаеКОг БГ ДБГ ЭКГ2 ДМГДМТ1мыми жидкостями, газ наддува — совершенным БН ЭКН РДЭКГ1ДМТ2МД...газом. В модели учтено: течение газа наддуваЭКО1ДБНДНДМТ6и компонентов топлива по магистралям, охлаподсистема КОо БО ДБО ЭКО2 ДМОнаддуваподсистемаподсистемаждение ДМТ вследствие излучения, нагрев приДМТбазовый блокгорении топлива и от электрических нагреватеРис.

5. Схема ДУлей, изменение удельного импульса ДМТ с температурой; работа автоматики ДУ: закрытие клапана ЭКН по превышениюпорогового значения давления в баках окислителя (БО) или горючего (БГ),включение и отключение нагревателей для поддержания температуры ДМТ.Предусмотрен ввод нештатных ситуаций: негерметичность магистралей,аварийная работа редукционного и обратных клапанов РД, КОо и КОг.Модель ДУ разработана путем композиции фрагментов, описанных в разделе 1, и отдельных программных функций, имитирующих специальные связи в элементах ДУ.

В моделях элементов ДУ использованы комбинации фрагментов «Вг+Гп», «Вг+Гу», «Вг+Гу+Оо», «Вж+Гп», «Вж+Гу», «Эп+Та».Проведены вычислительные эксперименты по моделированию эволюциисостояния ДУ в сценариях: первоначальный наддув топливных баков, работаМД, работа ДМТ с заданной скважностью. Рассмотрена штатная и нештатная работа узлов ИС.

Некоторые результаты расчетов показаны на Рис. 6.(в )(г )(а )Δ0 − Δг(б )Δ0 + ΔгΔИзменение коэффициента проводимости КОо при начальном наддуве(1 ) и при работе МД (2 ) для случаяналичия гистерезиса в характеристике КОо. (б ) — кривая открытия КОопри включении и работе МД, (г ) —кривая закрытия КОо при отключении МД, (а ), (в ) — переходы междуэтими кривыми.

∆0 — падение давления на КОо, при котором он закрывается, ∆г — величина гистерезисаРис. 6. Результаты моделирования ДУ12(1 )(2 )В разделе 3 третьей главы приведено описание модели системы обес-печения теплового режима. СОТР предназначена для термостатирования агрегатов КА, ее работа основана на циркуляции жидкого теплоносителя позамкнутому контуру. Схема СОТР приведена на Рис. 7.Теплоноситель принят несжимаемой жидкостью. В модели учтено: изменение освещенностиН1ХР при движении по орбите, охлаждение ХР за К1ДТЖЗРсчет излучения, поток теплоты от агрегатов КАТ1к термоплатам Т1 и Т2, изменение давления, соН2Т2здаваемого газожидкостным компенсатором К1РРЖв контуре, вследствие термического расширениятеплоносителя; работа автоматики СОТР: форРис.

Характеристики

Список файлов диссертации

Математическое моделирование служебных бортовых систем космических аппаратов в задачах управления полётом
Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее