Главная » Просмотр файлов » Лекции по дискретке

Лекции по дискретке (1021001), страница 5

Файл №1021001 Лекции по дискретке (Лекции по дискретке) 5 страницаЛекции по дискретке (1021001) страница 52017-07-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Решение. 1). Нет, так как элементами первого множества являются подмножества {1,2} и {2,3}, а второго – элементы 1,2,3.

2). Нет, так как первое множество одноэлементное, состоящее из одного элемента - подмножества, а второе имеет два элемента 1 и 2.

Пример 3. Перечислить элементы следующих множеств:

1). А={a|aB, B={1,2,3}};

2). A={a|aB, B={1,2,3}}.

Решение. 1). Так как аВ, а В – трехэлементное множество, то имеется 23=8 подмножеств: А={{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, }.

2). Так как аВ, то А=В={1,2,3}.

Пример 4. Доказать, используя тождества алгебры множеств, что

Решение. Используя тождества алгебры множеств, получаем

Пример 5. Упростить выражение

Решение. Используя законы и тождества алгебры множеств, получаем:

Пример 6. Построить диаграммы Венна для множеств А, В, С, DI, если АВСD, , .

Решение. Одно из возможных решение может быть представлено следующей диаграммой:

Пример 7. Опрос 100 студентов, изучающих иностранные языки, показал: английский язык изучают 29 студентов, немецкий –30, французский –9, только французский - 1, английский и немецкий – 10, немецкий и французский – 4, все три языка – 3 студента. Сколько студентов не изучают ни одного языка? Сколько студентов изучают только немецкий язык? При решении использовать диаграммы Венна.

Решение. Введем обозначения: I – множество всех опрошенных студентов; А – множество студентов, изучающих английский язык; Н – множество студентов, изучающих немецкий язык; Ф – множество студентов, изучающих французский язык (См. диаграмму Эйлера-Венна на рис. 1.1)

По условию задачи очевидно, что =3, тогда =4-3=1; 10-3=7. В таком случае только немецкий язык изучают 30-7-3-1=19 студентов.

Из условия задачи также следует, что 9-1-1-3=4, а поэтому только английский язык изучают 29-4-3-7=15 студентов. Тогда число студентов, не изучающих ни одного языка, будет равно

Рис. 100-(1+1+3+4+7+15+19)=50 студентов.

Пример 8. Доказать аналитически: .

Решение. Введем обозначения: ; .

а). Пусть , тогда имеет место либо , либо . Если , тогда и и в таком случае и или, что тоже самое, , т.е. . Если , тогда можно записать и одновременно. Откуда, очевидно, и в этом случае , т.е. .

Итак, если , то . Следовательно,

б). Пусть . Тогда и . Если , то либо либо Но если , то (см. п.а) . Если же , тогда Из последнего следует, что и т.е. , или, что тоже самое, , т.е. .

Итак, если то . Следовательно, .

Из пп. а и б следует, что и . Следовательно, D=E, т.е. . Тождество доказано.

Пример 9. Доказать, что для произвольных множеств А и В имеет место соотношение .

Решение. Для доказательства используем метод от противного, т.е. предположим, что . Тогда

Из АВ  если аА, то аВ. (1)

С другой стороны, из  существует такой элемент а, что и . (2)

Но с учетом (1) и (2)

=, т.е. получили противоречие.

Следовательно, предположение ложно и поэтому , т.е. .

Аналогично можно показать, что и, значит, , что и требовалось доказать.

Пример 10. {(1,2), (2,2), (Иванов, Петров)} есть функция с областью определения {1, 2, Иванов} и областью значений {2, Петров}.

Пример 11. {(1,2), (1,3), (2,5)} не является функцией, т.к. различные элементы (1,2) и (1,3) имеют одинаковую первую координату.

Пример 12. Множество {(a,b), (c,b), (e,d), (k,m)} есть функция, а подмножество этого множества {(a,b), (e,d)} является сужением этой функции на множество {a,e}.

Отображение представляет собой отображение множества Х в самого себя и определяется парой (Х, R), где . В этом случае для обозначения данного отображения используется термин отношение и вводят специальную символику: yRx – у находится в отношении R к х.

Подмножество называется n-местным отношением между А1, А2, …..An. Если n=2, то R называется бинарным отношением.

Пример 13. Множество {(3,4), (4,6), (7,9), (4,12)} будучи множеством упорядоченных пар натуральных чисел, есть бинарное отношение на N, где N – множество натуральных чисел.

Отношение R называется ( ):

рефлексивным, если для любого имеет место ;

антирефлексивным, если ни для какого не выполняется ;

симметричным, если для пары из aRb следует bRa;

антисимметричным, если из aiRaj и ajRai следует, что ai=aj;

транзитивным, если для любых a, b, c из aRb и bRc следует aRс.

Отношение R называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно. Обозначается символом .

Пример 14. Докажите, что отношение равенства «=» на любом множестве является отношением эквивалентности.

Решение. Действительно, для данного отношения выполняются свойства: рефлексивности (а=а); симметричности (а=в в=а); транзитивности [(а=в и в=с) а=с].

Отношением предпорядка на множестве А называется отношение , если оно рефлексивно и транзитивно.

Отношением порядка называется отношение, если оно рефлексивно, антисимметрично и транзитивно.

Отношением строгого порядка называется отношение, если оно антирефлексивно, антисимметрично и транзитивно.

Пример 15. Задано бинарное отношение R на множестве М={1, 2, 3, 4}. Является ли оно рефлексивным, симметричным, антисимметричным, транзитивным? Найти область определения R, область значений R, обратное отношение R-1, пересечение и объединение отношений R и R-1

R={(1,1), (1,2), (1,3), (1,4), (4,1), (4,2), (4,3), (4,4).

Решение.

Отношение R, заданное на множестве М, называется рефлексивным, если для всякого х из этого множества хRх истинно. Заданное отношение не является рефлексивным, так как нет пар (2,2) и (3,3).

Отношение R, заданное на множестве M называется симметричным, если на этом множестве из xRy следует yRx. Заданное отношение не является симметричным, т.к., например, пара (1,2) R, а (2,1) R.

Отношение R, заданное на множестве M называется антисим-метричным, если на этом множестве из xRy и yRx следует x=y. Заданное отношение не является антисимметричным, так как ему принадлежат пары (1,4) и (4,1), но 14.

Отношение R, заданное на множестве M называется антирефлексивным, если для любого xRx ложно. Заданное отношение антирефлек-сивно, так как (уже было показано) нет пар (2,2) и (3,3).

Отношение R, заданное на множестве M называется транзитивным, если на этом множестве из xRy и yRz следует xRz. Заданное отношение является транзитивным, так как для любых двух пар (a,b) и (b,c) следует, что (a,c) R, где а, в, с М.

Областью определения отношения R называется множество R ={x| (у) xRy}. Следовательно, областью определения R является двухэлементное множество {1, 4}.

Областью значений отношения R называется множество R={y|(x) xRy}. Следовательно, областью значений является все множество М={1, 2, 3, 4}.

Обратным отношением для R называется отношение R-1={(y,x)|(x,y) R}.

Обратное отношение R-1={(1,1), (2,1), (3,1), (4,1), (1,4), (2,4), (3,4), (4,4)}.

Пересечение R и R-1 равно R R-1={(1,1), (4,1), (1,4), (4,4)}.

Объединение R и R-1 равно R R-1={(1,1), (1,2), (1,3), (1,4), (4,1), (4,2), (4,3), (4,4), (2,1), (3,1)}.

10.Задачи для самостоятельного решения.

1.1. Пусть А={{1,2,3}, {1,3}, 1, 2}. Верно ли, что {1, 2}А?

{1, 2}A?

1.2. Перечислить элементы множества

, n=1, 2,…}.

1.3. Перечислить элементы следующих множеств:

1.4. Перечислите все элементы множества

1.5. Пусть А – произвольное множество. Что представляют собой следующие множества:

1.6. Множество А состоит из натуральных чисел, делящихся на 4, множество В – из натуральных чисел, делящихся на 10, множество С – из натуральных чисел, делящихся на 75. Из каких чисел состоит множество

1.7. Даны произвольные множества А, В, С такие, что:

и

и

Чему равно

1.8. Даны произвольные множества А, В и С такие, что . Чему равно

1.9. Даны множества:

а). А={h,o,t} и B={t,o,o,t,h};

б). A={r,e,s,t} и В={s,t,r,e,e,t}.

Верно ли, что

1.10. Известно, что а). б). . Каковы следствия из этих уравнений?

1.11. Задано, что S={a1, a2, a3}, причем известно, что , A={a1, a2}; , B={a2, a3}; ; C={a2}. Найти элементы следующих множеств:

1.12. Пусть I={1,2,3,4,5}, X={1,5}, Y={1,2,4}, Z={2,5}.

Найти множества:

Характеристики

Тип файла
Документ
Размер
11,4 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6294
Авторов
на СтудИзбе
314
Средний доход
с одного платного файла
Обучение Подробнее