Главная » Просмотр файлов » Партон В.З. - Механика разрушения. От теории к практике

Партон В.З. - Механика разрушения. От теории к практике (1015817), страница 36

Файл №1015817 Партон В.З. - Механика разрушения. От теории к практике (Партон В.З. - Механика разрушения. От теории к практике) 36 страницаПартон В.З. - Механика разрушения. От теории к практике (1015817) страница 362019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 36)

Заметим, что, кроме мембранной аналогии, в теории кручения стержней известны гидродипамические аналогии, а также электродинамическая аналогия. Последняя является следствием той аналогии, которая присущауравпениям теории упругости и уравнениям стационарных электрических полей в диэлектрических или токопроводящих линейных средах. В общем случае составить «словарь», позволяющий по решениям электростатических задач получать решение задач теории упругости, затруднительно, однако в ряде частных случаев составление такого «словаря» не представляет труда. Один из таких случаев упомянут выше, а другой связан с аптиплоской задачей (см. 9 7). Интересно, что с некоторыми оговорками уравнения апти- плоской задачи могут быть применены к расчету на сдвиг клеевого соединения двух тел.

Одним из важнейших примеров применения клеевых соединений являются многослойные конструкции, сочетающие в себе высокую удельную прочность, хорошие теплоизоляциопные г свойства и находящие при-,г ~ ° г,у ° мепение в авиационной и ра- ( кетпой технике, судостроении, энергомашипостроепии, химической промышлеппо- Л~ сти. При изготовлении мно- р Рис. 139. Трещввоподобный гослойпых конструкций из-за дефект в клеевом соедин«- несовершенства технологиче- нвв ских операций или по другим причинам в клеевом соединении возможно появление различных трещипоподобпых дефектов. Рассмотрим трещиноподобпый дефект, например, пузырек воздуха в толще клея, смоделировав его разрезом (рис.

130). Будем полагать для простоты, что дефект расположен в срединной поверхности клеевого слоя толщины 2Ь и имеет бесконечную протяженность вдоль оси й На поверхностях л =*й слоя заданы насательные напряжения, а поверхность дефекта свободна от напряжений.

Решен1«е этой задачи также сводится к решению системы уравнений (26), (27). Асимптотическпе выражения длп напряжений т„„т„, и смещения и» в малой окрестности у края трещины опроделяются формуламп (44), (46). Рассмотрим теперь топкую металлпческую пластину, форма которой совпадает с поперечным сечением рассмотренного выше призматического тела (рис. 14«0, а), предположям, что на дпух протпвополонсных ее сторонах СИИ((1(«М1)(( а /д Ркс. 14й Прапускаппе элек~рпческого така через толку«а металлическую пластппку, сааощпую (а) пап содержащую трещкпу (6) задан электрический ток Уа, причем кпс интересует распределеппе токов в пластине. «Словарь», позволяющий кз решений мехшшческой зада ш получить решение задачи о распределении токов, представлен таблицей 6.

Эта таблица позволяет решение системы (26), (27) прообразовать в решенно задачи о распределении токов в пластине бет дофектов. А как поведет себя такая же пластинка, по с трсщппоподобным дефектом (рпс. 140, б)? Читатель, руководствуясь аналогией, ответит, что распределение токов в окрестности края дефокта будет аналогичным распределсшпо папряя еппй (44), которое возникает в подобной механической задаче (26), (27) с заменой обоэпачопнй в соответствии с таблицей. Таяна« образом, дефект в токопроводящем листе прпводит к концентрации электрпческ««х токов, распределенно которых у края трепщпы имеет характерную особенность и пропорционально некоторому коэффициенту Кп который можно назвать козффеи(кентов«интенсивности токов, Эффект концентрации токов в окрестности края трещиноподобпого дефекта используется для торможе- 222 ния трещин в такопроводящих средах.

Так, если токо- проводящую пластинку с трещиной нагрузить механическими усилиями, перпепдикулярнымп трещине, и пропускать ток, то критическая нагрузка, приводящая к росту Таблица 6 Переменные для механнч»сная »»- дачи Пег»денные дня э»даян а токах Смещение н> Нвдряжендя тмы тш Закан рука> устннавлнвает соатветствне между деформацкямн » > нн, н напряженками т„„т„, соответственно; коэффнцнеят пропорцнонэдьностк 2р Потенцнал эдектраческого ноля >р 'Гокн 1„, У„ Закон 0»>э> уетанавлнвнет саотвотствне»>ежду нннряженностью эяектрнческога падя Е„, Е н комнокентамд вектора электрнческого тока >н, )н соответственно; коэффнцнент вропорцновадьностн о Ко»шаяенты вектора напряженности электрического поля Е„, Ен Прд условнн, что на границе ялвстднкн заданы только токи, нмеется допокннтедьное условие, в соответствии с которым суммарный ток, проходящий через контур дластннкн, равен нулю (»самоуравновешенность» токов) Деформации н, »„ Прн условии, что тело не закреплена, внешние нагрузки должны быть свмоураввове- шеннымн 223 трещины, будет большей, чем для такой же пластинки, но при отсутствии тонов.

Повышение критической нагрузки можно объяснить, если вспомнить, что в токопроводящих пластинках в соответствии с законом Джоуля появляются источники тепла. Так как окрестность трещины является зоной концентрации токов, то плотность д коулевых источников тепла в пей выше, чем вдали. Это приводит к тому, что указанная зона будет пагрета до высокой температуры (вплоть до точки плавления), и, кроме того, в пей возникнут сжимающие напряжения, препятствующие росту трещины. Близкой к только что рассмотренной задаче о пластинке с током является задача о распределении электростатического поля в плоском конденсаторе (рпс. 141). Установить аналогию не>иду этими двумя задачаып не представляет труда, несмотря на очевидное различие между токопесущей и диэлектрической пластинками, В частпости, в дпэлектрическпх пластинах осуществляется такое явление, как пробой, т.

е. потеря диэлектрических свойств или нарушение электрической прочности. С явлением пробоя дп- У~ электриков каждый сталкивается в повседпевпой жизня. Кто не расстраивался, когда в предвкушении встречи с хорошей телепередачей обпа"а руживал «безжизненный» теРвс. 14д Плоский конденсатор левизор. Одной из возмож- ных причин неисправностей мог явиться пробой какого-нибудь конденсатора при включении телевизора в электросеть, когда напряжение на его обкладках резко возрастает. г1то же такое пробой диэлектрика или, по-другому, потеря электрической прочности диэлектриком? Ответить па этот вопрос просто и сложно. Просто потому, что калы дый из нас имеет интуитивное представление о пробое, а сложно потому, что в литературе по пробою диэлектриков имеется несколько определений этого явления и множество различных физических теорий, объясняющих его. Одпо из возможпых определепий этого явления мы сейчас попытаемся дать.

Известно, что в природе идеальных изоляторов, т. е. сред, которые вообще пе проводят токи, пе существует. Да»ке хорошие изоляторы в большей илп меньшей степени проводят ток, однако по сравнению с проводниками эти токи в сотни раз меньше. Поэтому примепительпо к диэлектрикам есть смысл говорить о токах, и, следовательно, для любого диэлектрика или копдепсатора мы можем составить, в принципе, его вольт-амперпую характеристику. Для простоты ограничимся плоским конденсатором (рис. 141), когда суммарный тов, протекающий через конденсатор, монсно сравнительно просто измерить, включив чувствительпый амперметр последовательно с конденсатором (рис.

142). Плавно увеличивая напряжение У на клеммах цепи и измеряя ток » и напряжеппо ЛУ па обкладках конденсатора, мы можем построить завпспмость тока от напряжения. Качествепно такая зависимость представлена на рис. 143. Сначала при напряжении АУ(ЛУ,» (участок 1 кривой на рис.

143) ток в 294 цепи весьма мал и конденсатор сохраняет свои диэлектрические свойства. Дальнейшее увеличение напряжения на обкладках конденсатора прпведет к тому, что при ЛУ ) ЛУ,з малое унеличепие напряжения будет приводить к значительному увеличению тока (участок 2 па Рнс.143.

Вольт-амперпая ха- рзнтерпстпна дизаектрина Рис, Ы2. Элентричосиая схема, позвоаяющая измерять суммарный тон, пратеныощий через конденсатор 15 в 3 партон кривой рнс. 143). Другая ситуация, возникающая при пезпачптельаом увеличении напряжения ЛУ при достижении предельного значения Лс'„, начествепно характеризуется кривой 2' па рис. 113. Отметим, что в обоих случаях имеет место резвое увеличение тока, проходящего через диэлектрик. Если бы электрическое поле в конденсаторе было однородным, а диэлектрик между обкладками идеально однородным, то нарушение электрической прочности происходило бы одновременно во всем объеме диэлектрика.

В действительности же ввиду микропеоднородпости материала, пеидеальпости электродов пробой (даже в однородном электрическом поле) наступит в одном, наиболее слабом месте и в диэлектрике образуется токопроводящий капал, соединяющий разпоименно заряятеппые обкладки конденсатора. Сзьедовательпо, монзно трактовать пробой как «прорастание» токопроводящих поверхностей от одного электрода к другому, не вдаваясь при этом в сам механизм их образования. Такое представление явления пробоя весьма созвучно механике разрушения, где распространение трещины трактуется как увеличение начальной поверхности под действием внешней нагрузки.

Основываясь па этих рассуждениях и учитывая существующую аналогию между задачами механики иэлектро- статики диэлектриков, мон«но ввести понятие коэффициентов пптенспвностп, характеризующих электростатическое поле у краев электродов, а также в дпэлектрнке в окрестности концов тонких раскрытых трещин. Так, например, если диэлектрик, помещенный между двумя разнопмонпо заряжеппымп электродами, содержит трощнпоподобный дефект, то электростатическое поле вблизи его краев описывается уравнениями вида (44), (45), которые с учетом аналогии можно записать так: »Рвт .

Характеристики

Тип файла
DJVU-файл
Размер
4,3 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее