Главная » Просмотр файлов » Описание к лабораторным работам по вторичной обработке сигналов

Описание к лабораторным работам по вторичной обработке сигналов (1015474), страница 3

Файл №1015474 Описание к лабораторным работам по вторичной обработке сигналов (Описание к лабораторным работам по вторичной обработке сигналов) 3 страницаОписание к лабораторным работам по вторичной обработке сигналов (1015474) страница 32017-06-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Обычно траектория цели задается полиномом -й степени (сглаживающая функция) для каждой из координат (дальности, азимута и угла места). Например, для координаты дальности:

,

степень которого зависит от маневренности цели. Коэффициенты полинома , имеющие смысл дальности r0, скорости Vr , ускорения ar и т.д. подлежат оценке.

Оценка параметров траектории может быть произведена методом максимума функции правдоподобия, при этом роль помехи играют ошибки измерения координат, распределенные нормально с нулевым средним значением.

Функция правдоподобия отселектированных отметок опре-деляется n-мерной гауссовской плотностью вероятностей .

Логарифмируя и определяя частную производную по каждой из оцениваемой величин , составляется система уравнений правдоподобия:

решая каждое из которых получаем алгоритмы оценивания в виде:

,

Конкретные алгоритмы оценивания параметров траектории, описываемой полиномом первой степени (ν=1), полученные методом максимума функции правдоподобия для частного случая, когда в соседних обзорах помеха не коррелирована и дисперсии ошибок в соседних n обзорах постоянны для координаты дальности, имеют вид:

,

,

где ηr0 и ηVr - весовые функции оценки соответствующего параметра, n - число используемых обзоров.

Если n=2 , т. е. оценки и производятся по результатам измерения дальности r1 и r2 в первом и втором обзорах соответственно, то

,

.

Алгоритмы оценивания сглаженной и экстраполированной координат имеют вид:

,

.

Соответственно для n=2

; .

Среднеквадратические погрешности оценивания координаты, скорости, сглаженной и экстраполированной координат при использовании n обзоров

; ,

; .

где - среднеквадратическая ошибка измерения координаты в одном обзоре.

Аналогичные алгоритмы для траектории, описываемой полиномом второй степени, имеют вид:

, ,

, ,

,

где

;

;

;

;

.

Среднеквадратические погрешности оценивания скорости и ускорения при использовании n обзоров:

Таблица 2.


;

.

Увеличение числа обзоров при неизменной сглаживающей функции приводит к уменьшению ошибок оценивания параметров.

Для случаев, когда траектория описывается полиномами первой или второй степени и используются отметки, получаемые в 2-х или 3-х соседних обзорах, формулы для оценки параметров траектории, сглаженной и экстраполированной координат приведены в табл.2.

Аналогичные алгоритмы справедливы для оценки азимута, скорости изменения азимута, ускорения по азимуту, сглаженного и экстраполированного азимута и аналогичных оценок для угла места.

На разных участках полета цели используются сглаживающие функции разной степени и соответственно различные алгоритмы оценки параметров траектории, сглаженной и экстраполированной координат. Команда на переключение с одних алгоритмов на другие и изменение размеров строба поступает с устройства обнаружения маневра, которое вычисляет оценку ускорения объекта и сравнивает ее с порогом (порог превышается, когда появляется ускорение, это признак маневра).

Алгоритмы оценивания реализуются с помощью нерекурсивных цифровых фильтров, содержащих устройства памяти (регистры) для хранения отметок , блоки весовых коэффициентов и сумматор, см. рис.9. Для примера указаны весовые коэффициенты при оценивании экстраполированной координаты.

Для каждой из оцениваемых величин (начальная координата, скорость, ускорение, сглаженная и экстраполированная координаты) проектируется свой нерекурсивный цифровой фильтр. Их совокупность составляет набор для сопровождения по одной координате (например дальности, как рассматривалось выше). Для сопровождения по двум другим координатам (азимуту и углу места) должны быть предусмотрены соответствующие наборы фильтров.

Поскольку траектория как правило представляет собой чередование участков, описываемых полиномами первой и второй степени, то необходимо иметь набор фильтров для ν=1 и ν=2, переключаемых по сигналам от устройства обнаружения маневра.

Каждая такая система фильтров осуществляет сопровождение траектории отдельной цели.

Однако описанный метод оценивания параметров траектории обладает рядом недостатков, важнейшими из которых являются большой объем памяти для хранения отметок, полученных не менее чем в 4-6 соседних обзорах, а также задержка выдачи данных.

Значительно большей эффективностью обладают рекуррентные алгоритмы, обеспечивающие последовательное уточнение параметров траектории по результатам новых измерений и полученным ранее экстраполированным значениям координат. Эти алгоритмы синтезируются с привлечением теории оптимальной нелинейной фильтрации.

На практике широко распространены линейные рекуррентные алгоритмы, определяющие дискретные фильтры Калмана. Структурная схема многомерного дискретного фильтра Калмана приведена на рис.10.

В рассматриваемом случае, когда нам необходимо оценить параметры линейной траектории при равноточных и равнодискретных измерениях с периодом Tобз , фильтр получается двумерным, а оценки дальности и скорости определяются последовательно для k=1,2,... с помощью рекуррентных соотношений

,

,

где ,

.

На рис.11 показана схема фильтра, реализующего алгоритм.

Фильтр Калмана обладает существенным преимуществом по сравнению с нерекурсивными фильтрами. Однако, при практической реализации этого алгоритма возникают некоторые трудности. Во-первых, элементы матрицы коэффициентов усиления довольно быстро уменьшаются, стремясь в пределе к нулю, в результате чего оценки параметров практически перестают зависеть от наблюдаемых данных, а значит, возможные маневры объекта никак не будут учтены. Во-вторых, при некотором k элементы матрицы становятся соизмеримыми с ошибками счета, неизбежно возникающими при реализации фильтра на ЭВМ.

Один из способов преодоления этих трудностей - фиксирование элементов матрицы . Такой упрощенный двумерный фильтр Калмана иногда называют - фильтром, а зафиксированные коэффициенты обозначают и .

Стробирование отметок целей

Одной из основных операций, выполняемых в процессе автоматического сопровождения целей по данным обзорной РЛС, является отбор отметок (из числа полученных в новом обзоре) для продолжения каждой из сопровождаемых траекторий. Отбор отметок и их "привязка" к сопровождаемым траекториям называется селекцией отметок и производится на основе сравнения координат и параметров новых отметок с экстраполированными координатами и характеристиками сопровождаемых траекторий.

Для упрощения процесса селекции траекторий и сокращения объема вычислений сравнение координат наблюдаемых отметок (НО) и экстраполированных отметок (ЭО) обычно производится в стробах.

Строб представляет собой заранее выбранную область зоны обзора РЛС, координаты центра которой совпадают с координатами ЭО. Размер и форма строба обычно выбираются так, чтобы вероятность попадания в него НО, принадлежащей данной траектории, была близка к единице.

Стробирование отметок может быть физическим и математическим. Под физическим стробированием понимают выделение предполагаемой области появления новой отметки, принадлежащей сопровождаемой траектории, путем непосредственного воздействия на приемное устройство РЛС (например, путем отпирания выхода приемника только в областях предполагаемого появления отметки) . Под математическим стробированием понимается формирование предполагаемой области появления новой отметки в виде некоторой совокупности чисел (границ строба). Форму строба, как правило, выбирают простейшей, легко реализуемой в аппаратуре физического стробирования или на ЦВМ (при математическом стробировании).

При обработке информации в полярной системе координат простейший строб задается двумя значениями дальности Rн стр и Rк стр (границы строба по дальности) и двумя значениями азимута н стр и к стр (границы строба по азимуту), либо координатами центра строба Rэ, э и его размерами относительно центра ( , ). Строб в полярной системе координат изображен на рис.13,а.

При обработке информации в прямоугольной системе координат (при этом возможно только матаматическое стробирование) простейший (прямоугольный) строб также задается двумя парами чисел, определяющих границы строба (хн стр, хк стр, ун стр, ук стр), или координатами центра строба хэ, уэ и его размерами , относительно центра. Строб в прямоугольной системе координат изображен на рис.13,б.

Характеристики

Тип файла
Документ
Размер
560,5 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее