В. П. Исаченко, В.А. Осипова, А. С. Сукомел - Теплопередача (1013600), страница 40
Текст из файла (страница 40)
Величину Ргт называют турбулентным числом Прандтли. Как показано в $4*, кинематнческне коэффициенты турбулеатного переноса теплоты и колнчестаа движения г и а. зависят от параметров процесса турбулентного течения. Вследствпе этого в общем случае турбулентное число Прведтля также может являться параметром процесса. С учетом (7-15) и (7-!6) дифференциальяые уравнения энергии (4-44) и движения (4-45) для турбулентного пограничного слоя примут вид: Если Рг= ! (а=т) к Рг,= 1, то уравнении (7-17) в (7-!8) становятся идентичными. В этом случае при вдентичиых граничных условиях поля температуры б и сяоростн ю будут подобны. Чтобы проинтегрировать уравнения (7-!7) и (7-18), необходимо иметь сведения о коэффициентах турбулентного переноса теплоты и количества движекия.
Можно воспользоваться интегродифференцивльными уравнениями (7-3) и (7-5), но для етого необходимо знать, в частности, распределения скорости и температуры в турбулентном потоке. Для создания совершенных расчетных формул необходимо сочетание теоретических и эксперриентальпыз методов нсследоваивя, позволиющих проникнуть в мехкйизм турбулентного перепаса теплоты и количества движения при различных условиях течения. Для определения профиля осредненной скорости воспользуемся уравиевиямв (4-47) и (4-50): — — =ку — * ° 3 Лм ду Ш причем отдельные части этого уравнения имегот размерность скорости.
Предположим, что касатслыюе напряжение турбулентного течения не изменяется по у, т. е. )/Е,(у= р з,(у=сош!. Обозначим 1 з,(у че- 492 рез ез и яазовеы динамической скоростью. Тогда лы„— ы лв ю =ху —" ° ом = — —— зз ' и зх„=~ (пр+с. Уравнение (7-19) выражает так называемое логарифмическое распределение осредненной скорости турбулентного течения в пристенной области. Определим постоянную г согласно условию м (О) =О.
Из уравнения (7-19) следует, что при р — ьб з =- — со, т. е. получаем абсурдный результат. Необходимо учесть силы вязкости, которые должны быть велики непосредственяо у стенки Слой жидкости у стенки, в котором преоблада|от гнлы вязкости и который является составной частью турбулентного пограничного слоя, нааывают вяз к им подслоеы (плн лзминарныы подслоем). Учитывая только силы вязкости, уравнение движения можно записать в виде лчх „7г(уз=бе.откуда следует, что г(ю )г(р=- =.сопя(=-с, и В„=сгр+гь т. е. в вязком' подслое нмеет ыесто линейное изменение скорости. Таким образом, в данном случае з-.з,=рг(м !г(у= =-сопя!.
Отсюда: (7-20) бз=тмг(ю *. постоянную интегрирования с в уравнении (7-19) нз р=б =тюг(ыз. ге -ы (6,)-юг. Получим: ы, ! ч, 1 ач с= — — -- !вб,=- — — 1п'-,-'. ю ч ы**' Определим условия, что при Подстаяляя (учитываеы, что аначеиис с в (7-19), после некоторых преобрааозаний разность логарифмов равна логарифму частнога): — 1 (Рч= —" = — „!п р„+ ть (7-2() Формулу (721) называют универсальным логарифмичес к им распределением осредненной скорости в пристенной области турбулентного потока. Здесь ы х рч =— 1 е а* ч ы* Формула (7-21) веодвократво сопостанлялась с опытнылю данными при различных значениях у, (исключая очень малые значения у внутри вязкого подслоя).
Результагы соцоставлевия можно отразить, в частноств, графиком рис. 7-8. Кривая 1 соответствует линейному изменению скорости в вязком подслое; (7-22х) 193 здесь 6,— толщина вязкого подслоя: ю,=ы„(б„) — скорость на внеш- ней границе низкого водолея.Из (7-20) следует, что шх гвй гг а аг х г г агпг г г г г!Ог х г загс р е Г.а Распределение асзразвгрноа схеасстх по гаыччае ттратжзгвого паграязчзего не~ е и вюва,г —,,т г г и Кривая 2 отражает логарифмическое распределение осредненной скорости в пристенной турб>ленгной части пограничного слон. В втой области ы" = — 9,6129„+4,9.
Пересечению кривых 1 и 2 соответствует значение у.=-ю.р/т, примерно равное 12 Отсюда можно оценить расчетную толп!пну вязкого подслоя гы = 12 —, =! 2т !/ г (7-241 Пря больших значениях р. распределение скоростей отклоняется от логарнфмическош. Опыты показывают сложность движения в турбулентном слое— рис. 7-9. Вязкий нодслой ие имеет строго ламинарнаго течения вдоль стенки. Пульсапии, особенно крупномасштабные !низкочастотные), проникают в вязкий подслой, где их течение регламентируется вгтзкгшш силами.
Движение в вязкоы подслое, вообще говоря, является нестанионарным, граншгв подслоя четке не определена. Внешния граница вязкого подслоя является мащныы генератором пульсадионного двитхения. Наиболее высокая интенсивность турбулентности наблюдается в пристенной турбулентной области. Если, напри- 194 чер, степень турбулентности во внешнем потоке может составлять доли процента, то в пристенной области она может достигать нескольких дегяткав процентов. Пристенная область составляет примерно 20Ъ толщины пограничного слоя (толщина вязкого подслоя на один-два порядка меиыпе). Течение во внешней области пограин!ного слоя, согтавля!отпей примерно 80гй его толщины, зависит, в частности, от течения во внешнем потоке.
Внешняя граница турбулентного пограничного глоя непрерывно пульсирует. Зто связано с периодическим проникновением масс жидкости внешнего потока, где сппень турбулентности может быть невысока, во внешнюю область пограничного слоя. Такое взаимодействие пограннчногп слоя с внешним потоком приводит к образованию области перемежаемого течения.
Лналогнчно вязкому подслою непосредственно у стеакн можно выделить тепловой подслой. Он характеризуется преобладанием перегика теплоты с .' гзггг з Ф г гл пас . 1а Загипвюсзь, и Фара!хе гт-Ш! о чв~ з Пазах ля. 106 теплопроводиостью над турбулентным переносом. Совпадение толщии вязкого полслоя р!'," тз леч асго оспам ю о с.аа 6 и теплового й» имеет место прн Рг=1. д ','„„ч,„„ыз„' з При Рг>1 имеем, чш Аа(би. Последнее з ™ !г — а ча .а. Рг- г неравенство равносильно утверждению, а что а «асти аязкого подслоя от д=йи до у=ба теплота переносится не только теплопроводпосгью, но и пульсациями. Пульсации, проникающие в вязкий поделай, оназываются существенными для теплового переноса, ио не Лают значительного вклада в перенос количества движения по сравнению с молекулярным вязкост- ным переносом.
Такой характер тегз чания в особенности должен про. гщ являться для очень вязких жидкое гз —- отей (Ргл 1). В предельном случае Рг С ! должна иметь место обратная карlгз тина. Для малотеплопровопяых очень вязких сред, какими являются жидкости с большими числами Рг=- =рср/Х, тепловой подслой является г осноииым термнческпм сопротивлением. Ввиду интенсивного турбулеигного переноса толщины теплового идинамнческого пограиичныхслосв А п 6 практически совпадают. При турбулентном течении толщина слоя 6 болыпе, чеы при ламинарном. Зто объясняется влиянием турбулентной вязкости. Поскольку в тепловом подслое перенос теплоты определяется теплопроводностйо, изменение температуры по его толщине описываетси уравнением прямой (как дла плоской стенки, $2-!). Распределение температуры в подслое может быть представлено следующим обраэолс 6=рту„; !7-2'/ здесь 6=8/й„' б =д /дсгш .
Распределение температуры в зоне логарифмического распрелеле пни скороши можно описать эогарнфмическнч законом: 6= — тйзр +с,(рг). (7-26) Величина сч является функцией шпала Прандтля (рис. 7-10); она учитывает изменение температуры, связанное с нсравенгтвоч толгцнн подслоев й„н б .
Знание распределений скорости и температуры позволяет рассчитать тсплоотдачу с помощью интехральных уравнений теплового потока и импульса, полученных е б 7-1. Чтобы избежать громоздких выкладок, связаинык с использованием интегральных уравнений, воспользуемся упрощенным выводом. Будем при этом полагать, что Рг~!, но отличие числа Прандтлн от елиняпы не слишком велико. Исходя из линейного распределения скорости и температуры, для вязкого и теплового подслоев можно написать; э (э, дч/ 2 а Значеная э„и д„не измевяютсн по толщинам бч и й,. !Ь последних уравнений следует: хе.
э, э( а (7-27) здесь б;=Г,— /ы /,,— температура прн у=А,. т. е. на внешней граниие теплового полслоя; соответственно ю„.— скорость при у.=б; / — фнкснровавпак темпера~ура поверхности стенки. Для турбулентной части пограничного слон молекулярный перенос теплоты и количества движении можно не !шнтывать, Будем полагать также, что зшсь Рг,ы! (е,=еч). В этом случае распределение осреднепнмх скорости и температуры будут идентичны. Тогда нз уравнений (7-15) и (7-!8) следует. что в турбулентной части погранвчного слоя э//л!э .
д =аса = — ' да„/э/э Поскольку б ~б, й ~/г н б.=й, последнее уравнение запишем в энде д„=-э„с„— ' (7-хо) На травине теплового полслоя у=йч нет разрыва а величине теплового потока. Поэтому значения д, выраженные согласно уравнениям (7-27) и (7-28), можно првравнять. Пренебрежем прв этом возможнгзм разлн ~нем касательного напряжения трения з в уравнениях (7-27) и (7-28). Это различие обусловлено тем.
что в общем случае кблизн стенки Ргтчь! (так как йч~б ). Решим уравнения (7-27) и (7-28) относительно разностей темпе-' ратур: /,— /,= — ' — шг — а и /„— !, =- — 'ш, ! 1 — — * /!. Суэаиируя этн уравныгия, получаем; ( -29) Согласно уравнению (7-24)8 >2ч(м„, отсюда Ю м, = 3 —,э — = ! йе„= ! 2 1/ Н . (7-30> 'г г Примем, по отношение топщнн теплового и вязкого подслоев описыяаегся уравнением (7-8), полученным раисе для отношения толщины теплового и динамического пограничных слави в случае ланинарного течения: (7-3» Подставляя в (7-29) знлчеиия ю и й„(б„ согласно урзвнеиияч (7-30) и (7-3!) н решая уравнение (7-29) относительно 4„ получаем: ас (1,— 1„> (7-32) ..~1+ — „", ~У',(Р, )~ ' Для характеристики касательгюго напряжения трения на стенке з,.