petra (1006443), страница 14
Текст из файла (страница 14)
Липариты. Имеют порфировую стр-ру. В темной основной массе различаются вкрапленники (до 3-4 мм) Qz, санидина, Pl, реже Bi и Px. Qz и во вкрапленниках и в основной массе. Массивны, иногда полосчаты.
47.Основная масса кислых эффузивов и механизмы образования ее неоднородности.
Основная масса кислых эффузивов очень редко бывает однородной. В них все время присутствуют элементы расслаивания при флюидальной текстуре. На диаграмме с эвтектикой кислых пород (гранитов) видно, что составы слойков варьируют и избегают температурного минимума (пунктиром показано смещение эвтектики кислых пород в зависимости от содержания фтора в расплавах). При этом одни участки характеризуются кварц-ортоклазовым (I), а другие - плагиоклаз-кварцевым (II) составом. Эвтектика характерна для медленного охлаждения, а при быстром охлаждении развивается жидкостная несмесимость. Эвтектические системы представляют собой системы нерастворимости, которая получается на уровне твердой фазы. Примером может служить диаграмма "плагиоклаз - пироксен". В отличие от нее в системе типа "альбит - анортит" компоненты смешиваются даже в твердом состоянии. Можно пойти еще дальше и рассмотреть систему типа "альбит - ортоклаз", в которой мы добьемся эвтектики, только если каким-либо образом снизим температуру до купола несмесимости. Т.о., мы видим, что эвтектические системы в термодинамическом смысле являются неоднозначными (нелинейными), хотя составы остаются вроде бы одинаковыми. Так, в основной массе риолитов образуются слойки, часть из которых обогащена плагиоклазом, а другие - калиевым полевым шпатом. Аналогичную ситуацию можно рассмотреть для системы "полевой шпат - кварц", в которой выделяются трахитовые слои и слои, обогащенные Qz, по составу отвечающие ультракислому граниту (80-90% SiO2).
48.Кварцевые диориты и гранодиориты.
Гранодиориты и кварцевые диориты являются промежуточным звеном между диоритами и породами гранитного ряда. Все большую роль начинают играть водные темноцветные минералы. Появляется биотит. В кварцевых диоритах этот минерал являетя второстепенным и нередко замещает амфибол. Это отражает эффект кристаллизационного накопления калия в остаточных расплавах, т.к. калий не может в значительных количествах входить в состав плагиоклаза в плутонических породах. В гранодиоритах биотит – полноправный, пироксен только в виде реликтов. В кварцевых диоритах Pl-30, в гранодиоритах – 25.Гранодиориты характеризуются появлением полевого шпата. Кристаллизуется из расплава последним, т.о. занимает пространства.
Таким образом, гранодиориты – плагиоклаз, РО, замещаемая биотитом, кварц, м.б. ортоклаз.
С возрастанием содержания кварца в породе увеличивается концентрация альбитового компонента.
Рисунок
Эти породы мы видим в интрузивах, расслоенных комплексах, где не выделяются типы с резко дискретными слоями. Этот непрерывный тип отражает кристаллизационную дифференциацию. Комплекс озера Севан. Наличие офиолитовой ассоциации. Она нетипична и расслоена. Под габброидами – гипербазиты с хромитовым оруденением. Гранитов нет, все венчают гранодиориты. Для массивов подобного рода характерна скрытая расслоенность, т.е. увеличение железистости темноцветных с ростом кремнекислотности пород (гипербазиты-габбро-диориты-кварцевые диориты-гранодиориты). Такие интрузивы резко отличаются от интрузивов с дискретным расслоением, в которых нет гранодиоритов. Резкий переход есть и в непрерывных сериях – базиты-гипербазиты, нет промежуточных пикритовых составов. Это наблюдается в любом интрузиве и служит признаком ликвации. В Бушвельдском массиве очень контрастное расслоение, нет даже диоритов, лишь УО, пироксениты, габбро-нориты, плагиоклазиты и граниты, богатые калием, в них много плагиоклаза. Кварц и ортоклаз образуют гранофировые срастания (рис 132)
Диориты не самостоятельные породы в плутонической серии, в отличие от андезитов в вулканической.
Для пород Севана главной движущей силой расслаивания является кристаллизационная дифференциация: т.е. кристаллизация минералов и остаточный расплав, во всех случаях, кроме базит-гипербазитового расслаивания. Схема строения Севана идеализированная, т.к. остаточные расплавы тоже расщепляются с образованием отдельных слойков, но это уже несущественно. При наличии крарца больше 25%, в плагиоклазе появляется зональность. В центре - №50, по краям – 35-40 Центральные зоны более сильно подвергаются изменениям. Пироксен по краям более железистый (до 15). КПШ подвергается пелитизации – вростки глинистого состава. Кварц не подвергается вторичным изменениям.
49.Плутонические породы кислого состава повышенной щелочности и щелочные.
К породам повышенной щелочности и щелочным относятся граниты и гранитоиды, богатые щелочными ПШ, сравнительно бедные кремнеземом (переходные к сиенитам) или содержащие щелочные темноцветные минералы (эгирин, рибекит, арфведсонит). Граниты нормальной щелочности связаны с этими постепенными переходами. Они обусловлены понижением в гранитах роли нормативного анортита. Содержание его менее 5% по отношению к сумме ПШ и отвечает исчезновению в модальном составе пород плагиоклаза. Такие граниты называются субщелочными. Розенбуш назвал эти граниты так же щелочными, рассматривая как достаточный признак щелочной состав ПШ. Типичные субщелочные породы – граносиениты, которые связывают граниты с сиенитами не только по составу, но и геологически. Количества кварца подвержены большим колебаниям (в скобках содержание SiO2): 15-25 % (65-70 %). В граносиенитах обычны амфиболы и клинопироксены наряду с биотитом и гиперстеном. Существуют как мезократовые, так и лейкократовые граносиениты и граносиенитовые аляскиты. Среди граносиенитов широко распространены сильножелезистые разновидности. Характерны гранитоиды с фаялитом или гортонолитом и феррогиперстеном. К железистым граносиенитам относятся и рапакиви (см билет 35).
Щелочные граниты подразделяются на 2 типа: эгирин-арфведсонитовые или эгирин-рибекитовые, с переменным соотношением щелочных пироксенов и амфиболов вплоть до чисто пироксеновых и амфиболовых, и феррогастингситовые. Феррогастингсит отличается пониженным по сравнению с эгирином, рибекитом содержанием щелочей (3-4%), повышенным кальция, алюминия и представляет собой сильно железистую РО с повышенным примерно в 2 раза содержанием щелочей.
Акцессорные минералы щелочных гранитов отличаются присутствием титано- и цирконосиликатов – астрофиллита, лампрофиллита. Характерен флюорит, присутствуют циркон, апатит, магнетит.
Щелочные граниты – чаще всего субплатформенные или платформенные образования.
Щелочные минералы появляются в результате изменения коэффициента агпаитности (Ка>1 рибекит, арфведсонит, эгирин; Ка=1 щелочные ПШ – ортоклаз, альбит). F смещает гранитную эвтектику (рис), расширяя поле кристаллизации кварца. То есть все фтористые магмы являются подкисленными. Если гранитные магмы подщелачивать, то тенденция будет противоположной. Щелочные граниты являются самыми богатыми кварцем. Коржинский ввел термин «щелочнометальность», которая повышает кремнекислотность.
50.Граниты рапакиви и механизм образования их структуры.
Все граниты можно разделить по содержанию биотита. Биотит платформенных гранитов более железистый, чем складчатых областей. Тип платформенных гранитов был выделен Соболевым, который изучил Коростеньский плутон и выделил 2 главные особенности слагающих его пород: повышенная железистость и уход составов пород в щелочную область. Типичные представители таких пород – граниты рапакиви, которые по существу - граносиениты (65 мас % SiO2). Они приурочены к разделу архея и протерозоя. Породы имеют крупнозернистую порфировидную структуру, обусловленную наличием порфировых вкрапленников K-Na ПШ в более мелкозернистой массе кварца, биотита и сахаровидного плагиоклаза-20. С ними ассоциируют анортозиты. Граниты рапакиви имеют фтористый характер – появляется флюорит в качестве акцессорного минерала, а еще титаномагнетит, апатит, циркон.
Кристаллизация ортоклаза, не имеющего летучих компонентов, приводит к повышению флюидного давления (HF), снижая температуру кристаллизации. Происходит растворение уголков кристаллов ортоклаза иногда с образованием биотита. С падением температуры мы достигаем новую линию ликвидуса – опять происходит кристаллизация ортоклаза, ситуация повторяется. Так появляются овоиды K-Na ПШ (рис 151)
Рассмотрим другую эвтектику (рис 152). Накопление фтора приводит к расширению поля кристаллизации плагиоклаза как более кислотного компонента. Плагиоклаз становится минералом на ликвидусе, и овоиды K-Na ПШ окружаются каемками олигоклаза.
Общая петрографическая закономерность: если в породе видны округлые кристаллы, значит, было чередование процессов кристаллизации и растворения.
Среди акцессорных минералов в гранитах рапакиви выделяются монацит, циркон. В зернах циркона к краям снижается отношение Hf/Zr, что отражает подкисление магмы в ходе кристаллизации. Т.е. граниты рапакиви – продукты кристаллизации подкисленных магм. Они дают остаточные магмы – материнские для гранитных пегматитов (модель Ферсмана).
Породы обычно массивны.
51.Типы гранитных пегматитов и процессы их образования.
Рассмотрим строение Коростеньского Плутона (рис 152).
Если представить себе неэродированный массив, то есть огромные массы анортозитов, что отражает разделение массива на плагиоклазовую и калишпатовую части. Анортозиты представлены лабрадоритами с прослоями пироксенитов с ильменитом. Ниже – пегматитоносные граниты, усеянные камерными и шлировыми пегматитами.
Термин «шлировые пегматиты» применяется к форме тела. Шлиры достигают размера университета. Форма круглая, т.е. это были капли расплава, отделившегося ликвационным путем. Шлиры окружены меланократовым биотитовым гранитом (рис 153) Этот процесс аналогичен расщеплению в жильных сериях. Меланократовые ореолы используются как поисковые критерии на пегматиты. Пегматитовое тело всегда выше ореола, что отражает эффект всплывания более легкого шлира. Случается отрыв ореола. На границе шлира с вмещающими породами возможно появление мелкозернистых аплитовых оторочек, что связано с эффектом быстрой кристаллизации при дегазации. Внутри пегматитового тела имеется четкая зональность: зона письменных гранитов – зона блокового КПШ – кварцевое ядро с камерой (рис 153). Письменные граниты имеют типичную структуру эвтектической кристаллизации, т.е. отщепившийся расплав был очень близок к эвтектике. Эта структура обусловлена наличием разноориентированных вростков кварца в КПШ. У контакта шлира письменные граниты мелкозернистые, в них присутствуют фенокристаллы биотита, богатого F. В нормальных гранитах кристаллизация начинается с ПШ, здесь с биотита. Значит, магма очень богата флюидами, среди которых у F - значительная роль (рис 154)
Ближе к центру камеры происходит укрупнение структуры. Потом резкая граница – кварц пропадает, остаются гигантские кристаллы КПШ (низкотемпературный высокоупорядоченный микроклин-пертит) – блоковая зона. Здесь мы имеем дело с отщеплением эвтектической пегматитовой магмы, которая дальше еще расщеплялась. Кристаллизация магмы приводит к повышению флюидного давления и замедляется. Под давлением флюидов магмы расщепляются на калишпатовую и кварцевую части, кристаллизующиеся отдельно. Камерные пегматиты – наличие плоскостей, в которых растут гигантские кристаллы. Все флюиды, соли концентрируются в камере, которая находится в центральной части пегматитового тела и является вместилищем всех драгоценных камней. Главным сырьем здесь является пьезокварц. Кварц – рост сверху, здесь сотовый кварц – переход альфа-бета кварца, мориона. Снизу растет топаз (алюминий заимствуется из калишпатовой зоны), иногда встречаются минералы Ве. Завершается все флюоритом, который заполняет пространство между кристаллами. Повышенное флюидное давление часто приводит к разрыву, и кварц-полевошпатовая масса может мигрировать с образованием жильных пегматитов. Для них тоже характерно зональное строение. Кварцевые ядра в отдельных частях могут отсутствовать. Роль флюидов та же – приводят к перекристаллизации кварц-полевошпатовой массы. Как пегматиты вписываются в гранитную систему? (рис 156) Пегматиты богаче КПШ, что отражает тренд 2. Мы рассмотрели топазово-пьезокварцевый (хрусталеносный) тип пегматитов (а). Он наиболее близок к гранитной эвтектике. Далее идут редкометальные и редкоземельные пегматиты (б). И самые бедные кварцем пегматиты – слюдяные (в). Это особый пегматитовый тренд – пегматиты беднее SiO2, чем граниты. Мусковитовые пегматиты надо называть граносиенитами, в них выделение кварцевого ядра очень редко. Модель Ферсмана не способна объяснить образование кристаллов в полостях. Образование пегматитовых тел в твердом состоянии. При участии флюидов происходит перекристаллизация гранитных массивов. Но не объясняет резких границ в строении. Конец 70х – ликвационная модель их образования.