Ответ на вопрос №147019: Найдите частные производные второго порядка функции z = x³y⁴ + ycosx (∂²z/∂x²) = 6xy⁴ − ycosx, (∂²z/∂y²) = 12x³y², (∂²z/∂x∂y) = 12x²y³ − sinx (∂²z/∂x²) = 3x²y⁴ − ysinx, (∂²z/∂y²) = 4x³y³ − cosx, (∂²z/∂x∂y) = 6x ⋅ 4y − sinx (∂²z/∂x²) = 6xy⁴ − ycosx, (∂²z/∂y²) = 12x³y² − cosx, (∂²z/∂x∂y) = 12x²y³ + sinx (∂²z/∂x²) = 3x²y⁴ − ycosx, (∂²z/∂y²) = 12x³y², (∂²z/∂x∂y) = 6xy³ − sinx Найдите частные производные второго порядка функции z = x³y⁴ + ycosx - Ответ на вопрос №147019Найдите частные производные второго порядка функции z = x³y⁴ + ycosx - Ответ на вопрос №147019
2024-09-242024-09-24СтудИзба
Найдите частные производные второго порядка функции z = x³y⁴ + ycosx - Ответ на вопрос №147019
-5%
Вопрос
Найдите частные производные второго порядка функции z = x³y⁴ + ycosx- (∂²z/∂x²) = 6xy⁴ − ycosx, (∂²z/∂y²) = 12x³y², (∂²z/∂x∂y) = 12x²y³ − sinx
- (∂²z/∂x²) = 3x²y⁴ − ysinx, (∂²z/∂y²) = 4x³y³ − cosx, (∂²z/∂x∂y) = 6x ⋅ 4y − sinx
- (∂²z/∂x²) = 6xy⁴ − ycosx, (∂²z/∂y²) = 12x³y² − cosx, (∂²z/∂x∂y) = 12x²y³ + sinx
- (∂²z/∂x²) = 3x²y⁴ − ycosx, (∂²z/∂y²) = 12x³y², (∂²z/∂x∂y) = 6xy³ − sinx
Ответ
Этот вопрос в коллекциях
-28%

Каждая купленная работа – это шаг к вашей успешной сдаче и мой стимул делать ещё лучше. Вместе мы создаём круговорот добра в учебе 🥰