Популярные услуги

Главная » Лекции » Строительство » Лекции по строительной теплофизике » Защитные свойства наружных ограждений

Защитные свойства наружных ограждений

2021-03-09СтудИзба

3. Защитные свойства наружных ограждений

3.1.  Расчетные параметры наружной среды для теплотехнических расчетов

3.1.1.  Холодный период года и отопительный период

Уровень теплозащиты ограждающих конструкций в различных местностях должен быть различным. Наружная среда на различных территориях воздействует на ограждающие конструкции по-разному. Параметры наружной среды постоянно меняются. Совокупность непрерывно меняющихся значений метеорологических элементов и атмосферных явлений, наблюдаемых в данный момент времени в определенном месте, называется погодой.   Понятие «погода» относится к текущему состоянию атмосферы. Статистический многолетний режим погоды на определенной территории называется климатом. Зная, в каком климате находится местность, можно с уверенностью сказать, какой погоды в этой местности принципиально быть не может. Для выбора информации о наружной среде опираются на климатические данные.

Проектные показатели теплозащиты здания должны отвечать нормируемым уровням наружных климатических параметров в холодный период года, которым в соответствии с [9] считается отрезок времени со среднесуточной температурой наружного воздуха, равной 8оС и ниже. По [1] для основной массы зданий понятие отопительного периода совпадает с понятием холодного периода года и только для лечебно-профилактических, детских учреждений и домов-интернатов для престарелых считается периодом со средней суточной температурой наружного воздуха не менее 10 оС.

Параметрами наружного климата, учитываемыми в теплотехнических расчетах, являются: температура наружного воздуха, скорость ветра,  зона влажности района строительства. Одни значения параметров климата описывают наиболее холодный расчетный период и называются расчетными, определяющими обычно установленные мощности оборудования. Другие – средние уровни в пределах какого-либо периода, как правило, используются в расчетах эксплуатационных характеристик за весь этот период.  При выборе теплозащиты периодом эксплуатации считается отопительный период, эксплуатационной характеристикой, интересующей специалистов за этот период,  являются, например, энергозатраты на возмещение теплопотерь через наружные ограждения за отопительный период.   Значения климатических параметров холодного периода года принимаются по табл. 1* СНиП "Строительная климатология" [9], где в алфавитном порядке расположены областные и краевые центры, все ос­тальные пункты даны внутри области или края.

3.1.2. Расчетная температура наружного воздуха

Рекомендуемые материалы

Самые холодные погодные условия в пределах отопительного периода года описываются расчетными значениями климатических параметров. Они не являются абсолютными экстремумами для района строительства. Дело в том, что экстремальные, наиболее суровые условия, бывают очень редко – раз в сотни лет. Ориентация на эти значения приводит к значительному удорожанию строительства. Поэтому расчетные уровни принимаются с некоторой обеспеченностью, под которой понимается суммарная вероятность того, что данный параметр не превзойдет  (в холодный период года по суровости) расчетного значения.

Наиболее значимым параметром холодного периода года для выбора теплозащитных качеств наружных ограждений считается температура. Так как ограждения и помещения обладают тепловой инерцией, иначе говоря, требуют времени для охлаждения или нагрева до изменившейся температуры окружающего воздуха, принято в качестве расчетной tн принимать среднюю температуру наиболее холодной пятидневки –  среднюю температуру пяти последовательных суток с самой низкой средней температурой за год.

До 1994 года расчетная температура наружного воздуха для проектирования ограждения увязывалась с его тепловой инерцией. Для «легких» ограждений, быстро остывающих при понижении температуры наружного воздуха, за расчетную температуру принималась средняя температура наиболее холодных суток, а для «массивных» - средняя температура наиболее холодной пятидневки. Пятидневка, как расчетный период усреднения температуры наружного воздуха, в 1946 году была предложена К.Ф.Фокиным [10]. К.Ф.Фокин, во-первых, сделал анализ многолетних данных об изменении температуры наружного воздуха в период похолодания и дал предложения по «нормализации» расчетных кривых изменения температуры наружного воздухи. Во-вторых, он экспериментально установил, что  стена из полнотелого кирпича толщиной 64 см, какие в то время были наиболее распространены, имеет теплопотери за 5 суток при переменной температуре наружного воздуха такие же, как если бы температура наружного воздуха держалась постоянной и равной средней за эти 5 суток.  

После 1994 года, когда теплозащита зданий была значительно усилена, посчитали, что все ограждения можно отнести к числу «массивных» и расчетной температурой для теплотехнического расчета ограждающих конструкций была принята средняя температура наиболее холодной пятидневки.

Но за расчетную температуру наружного воздуха tн принимается не самая низкая средняя  температура наиболее холодной пятидневки, а с обеспеченностью 0,92.

Для получения этого значения выбиралась наиболее холодная пятидневка в каждый год рассматриваемого отрезка n лет (в [11] период с 1925 по 1980 годы). Выделенные значения температуры наиболее холодной пятидневки t5 ранжировались в  порядке убывания. Каждому значению присваивался номер m. Обеспеченность каждого m-го члена ряда из n компонентов Коб в общем случае вычисляется по формуле:

Коб =(1-m/n).                                                               (3.1)

3.1.3. Средние температура и продолжительность отопительного периода

Для характеристики отопительного периода служат средняя температура tо.п., оС, и продолжительность zо.п., сут., этого периода. Причем они относятся к отрезку времени с устойчивыми значениями граничной температуры отопительного периода. Отдельные дни со средней суточной температурой, равной или ниже соответственно 8оС или 10оС, не учитываются. Эти данные приведены в СНиП 23-01-99* «Строительная климатология» [9].

Средняя температура tо.п. и продолжительность zо.п. отопительного периода рассчитаны по следующей методике. Сначала строилась гистограмма годового хода температуры воздуха: наносился прямоугольник, у которого основание равно числу дней месяца, а высота – средней температуре воздуха за данный месяц (рис 10). Кривая годового хода проводилась так, чтобы участок, отсекаемый от  прямоугольника, был равен по площади участку, который эта кривая прибавляет к нему с другой стороны. Затем, с графика снимались даты устойчивого перехода средних суточных температур воздуха через соответственно 8оС или 10оС. По разнице между этими датами определяется продолжительность отопительного периода.

3.1.4. Расчетный и среднесезонный ветер

За расчетную скорость ветра v принимается максимальная из средних скоростей ветра в январе по румбам (направлениям) ветра. Но учитывается только ветер, повторяемость румба которого составляет 16% и более. В случае, когда средняя скорость ветра по румбу повторяемостью 12-15% превышает на 1 м/с и более наибольшую из

Описание: C:Documents and SettingsOlgammaDesktopмамедля методичкиpic10.jpg

Рис. 10. Расчет продолжительности и средней температуры ворздуха периода со  среднесуточной температурой воздуха +8 оС: цифра в кружке – средняя  темпера-тура воздуха за неполный месяц; 30.IX, 23.IV – даты начала и конца периода со среднесуточной температурой воздуха, равной и ниже +8 оС (отопительный период)

средних скоростей ветра по румбу повторяемостью 16%, максимальная скорость ветра принимается по румбу повторяемостью 12-15%.

Ветровой режим отопительного периода характеризуется средней скоростью vо.п., м/с, за этот период.

3.1.5. Влажностные условия района строительства

Для описания влажностных условий района строительства СНиП «Тепловая защита зданий» [1] выделяет три климатических зоны влажности: 1 – влажная, 2 – нормальная, 3 – сухая, которые обозначены на географической карте России.  Она  составлена В.М.Ильинским [12] на основе значений комплексного показателя, который рассчитан по соотношению среднего за месяц для безморозного периода количества осадков на горизонтальную поверхность, относительной влажности воздуха в 15 ч самого теплого месяца, среднегодовой суммарной солнечной радиации на горизонтальную поверхность, годового размаха среднемесячных значений (января и июля) температуры воздуха.

3.2. Расчетные значения параметров внутреннего микроклимата

В ГОСТ 30494-96 [13] приведены расчетные значения параметров внутреннего микроклимата жилых и общественных зданий в оптимальных для пребывания человека и в допустимых диапазонах. Причем для жилых зданий и зданий детских дошкольных учреждений эти данные выделены в самостоятельные таблицы. Помещения общественных зданий разделены на 6 категорий. При определении теплозащиты общественных зданий следует определить категорию основных функциональных помещений здания. Например, в административном здании основными являются кабинеты и рабочие комнаты, в школе – классы. Иногда одно здание делится на отдельные функциональные зоны, для которых принимаются свои расчетные параметры.

 В теплотехнических расчетах сопротивления теплопередаче ограждений жилых и общественных зданий за расчетную температуру внутреннего воздуха tв принимается [1]  минимальное значение оптимальной температуры.

Расчетную относительную влажность внутреннего воздуха в теплотехнических расчетах принимают для исключения выпадения конденсата в местах теплопроводных включений ограждающих конструкций, в углах и оконных откосах, откосах зенитных фонарей. Эта относительная влажность несколько завышена по отношению к поддерживаемой для комфортного пребывания людей, так как выбирается максимально возможной в расчетном помещении. Для теплотехнических расчетов следует принимать: для помещений жилых зданий, больничных учреждений, диспансеров, амбулаторно-поликлинических учреждений, родильных домов, домов-интернатов для престарелых и инвалидов, общеобразовательных детских школ, детских садов, яслей, яслей-садов (комбинатов) и детских домов – 55%, для помещений кухонь – 60%, для ванных комнат – 65%, для подвалов и подполий с коммуникациями – 75%; для теплых чердаков жилых зданий – 55%; для помещений общественных зданий (кроме вышеуказанных) – 50% [1].

В зависимости от сочетания расчетной температуры и расчетной относительной влажности внутреннего воздуха, принимаемых для теплотехнических расчетов, внутренний режим по влажностным условиям делят [1] на сухой, нормальный,  влажный и мокрый. Например, при температуре внутреннего воздуха от 12 оС  до 24 оС, то есть для диапазона температур, охватывающего большинство жилых и общественных помещений,  влажностный режим считается сухим при относительной влажности 50% и ниже, то есть сюда попадают административные помещения и другие без скопления людей. При относительной влажности свыше 50% и до 60% – нормальным, к этой категории относятся

все помещения, перечисленные в предыдущем абзаце, для которых нормируется влажность 55% и 60%. Помещения с относительной влажностью свыше 60% и до 75% считаются влажными, а свыше 75%  – мокрыми.  К последним относят, как правило, производственные помещения с мокрым режимом. Ванные залы бассейнов считаются помещениями с мокрым режимом, так как при расчетной влажности для теплотехнических расчетов 67% в них поддерживается температура воздуха выше 24 оС.  

3.3. Требуемое сопротивление теплопередаче наружного ограждения

3.3.1  Показатели теплозащиты здания

СНиП [1] устанавливает три показателя тепловой защиты здания:

а) приведенное сопротивление теплопередаче отдельных элементов ограждающих конструкций;

б) перепад между значениями температуры внутреннего воздуха и на поверхности ограждающих конструкций и сама температура на внутренней поверхности ограждения, которая должна быть выше температуры точки росы (санитарно-гигиенический показатель);

в) удельный расход тепловой энергии на отопление здания, позволяющий варьировать величины теплозащитных свойств различных видов ограждающих конструкций здания с учетом объемно-планировочных решений здания и выбора систем поддержания микроклимата для достижения нормируемого значения этого показателя.

Выбор теплозащитных показателей здания осуществляют по одному из двух альтернативных подходов [1]:

- предписывающему, когда нормативные требования предъявляются к отдельным элементам теплозащиты здания – наружным стенам, полам над неотапливаемыми пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.;

- потребительскому, когда сопротивления теплопередаче ограждений могут быть снижены по отношению к предписывающему уровню, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного.

Санитарно-гигиенические требования должны выполняться всегда.

3.3.2. Предписывающий подход к выбору сопротивления теплопередаче наружных ограждений

Требуемое (нормируемое) сопротивление теплопередаче ограждающей конструкции – это минимально допустимое сопротивление теплопередаче для рассматриваемого ограждения. Для ограждающих конструкций помещений с температурой внутреннего воздуха выше 12оС приведенное сопротивление теплопередаче наружных ограждений  следует принимать не менее нормируемого значения исходя из нормы энергосбережения, определяемой по табл. 4 [1].

Сопротивления теплопередаче наружных ограждений, в соответствии с действующими нормами выбираются по условиям необходимости энергосбережения за отопительный период. Эти нормы, представленные в табл. 4 [1], отражают уровень второго этапа повышения требований к теплозащите, введенного с 2000 года Госстроем России. В таблице величины требуемых сопротивлений теплопередаче , м2.оС/Вт, приводятся в зависимости от назначения здания, назначения ограждения и числа градусо-суток отопительного периода Dd, оС.сут. Градусо-сутки отопительного периода Dd, оС.сут, определяют по формуле:

                                      Dd=(tв-tо.п.).zо.п.,                                                                    (3.2)

где  tв- расчетная температура внутреннего воздуха для основных помещений здания, оС, по п. 3.2;

tо.п, zо.п – средняя температура, оС, и продолжительность, сут, отопительного периода в районе строительства, принимаемые по [9] в соответствии с п. 3.1.3.

Тот факт, что в качестве расчетных параметров для выбора требуемого сопротивления теплопередаче ограждающих конструкций принимается средняя за отопительный период температура и его продолжительность, а не температура наиболее холодной пятидневки, объясняется тем, что основным требованием, обосновывающим этот выбор, является минимизация энергопотребления на отопление за отопительный период.

До 1994 года ограждающие конструкции имели сопротивление теплопередаче, обеспечивающее минимально возможную границу по санитарно-гигиеническим условиям. При расчете требуемого сопротивления теплопередаче ограждений , м2.оС/Вт, исходили из поддержания в заданных пределах разности ∆tн,оС, между температурой внутренней поверхности ограждения и внутреннего воздуха в расчетный зимний период:

                                      ,                                                             (3.3)

где  n – коэффициент положения ограждения относительно наружного воздуха, уменьшающий разность температуры для ограждений, не соприкасающихся с наружным воздухом. Значения коэффициента принимаются по [1];

tв- расчетная температура внутреннего воздуха для теплотехнического расчета наружных ограждений для основных помещений зданий, оС,

tн- расчетная температура наружного воздуха в холодный период года, оС, равная средней температуры наиболее холодной пятидневки с обеспеченностью 0,92;

∆tн- нормируемый температурный перепад между температурой внутреннего воздуха tн и температурой внутренней поверхности τв ограждения. Значения нормируемого перепада ∆tn приведены в [1] в зависимости от функционального назначения здания и назначения ограждения;

αв- коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2.оС). Для стен полов, гладких потолков, потолков с выступающими ребрами при отношении высоты ребер к расстоянию между гранями соседних ребер не более 0,3 αв=8,7 Вт/(м2.оС), для окон αв=8 Вт/(м2.оС), для зенитных фонарей αint=9,9 Вт/(м2.оС).

В настоящее время формула (3.3) применяется для определения требуемого сопротивления теплопередаче наружных ограждений (кроме окон) производственных зданий с большими избытками теплоты, для зданий, предназначенных для сезонной эксплуатации (весной или осенью), а также для зданий с расчетной температурой внутреннего воздуха 12оС и ниже. Формула (3.2) определяет норму сопротивления теплопередаче внутренних ограждений здания, если разность температуры разделяемых помещений равна 6оС и более. При этом за температуру наружного tн и внутреннего воздуха tв принимаются расчетные значения температуры помещений, разделенных ограждением, а коэффициент n приравнивается к 1. Формула (3.2) определяет минимально допустимое сопротивление теплопередаче для ограждающих конструкций реконструируемых зданий, являющихся памятниками архитектуры, так как для сохранения архитектурного облика в таких зданиях нельзя делать утепление фасадов снаружи.

3.3.3. Понятие об экономически целесообразном сопротивлении теплопередаче ограждения

           

Постоянный рост цен на тепловую энергию, в последние годы происходящий наиболее быстро, делает весьма актуальной задачу по определению экономически целесообразной толщине утеплителя в наружных ограждениях здания. Наиболее простая модель, дающая упрощенное представление об экономическом анализе, направленном на решение этой задачи, называется методом минимума приведенных затрат. Она состоит в следующем. Инвестор осуществляет единовременные вложения (капитальные затраты) К на строительство 1 м2 ограждающей конструкции. Годовые затраты на компенсацию теплопотерь через 1 м2 этой конструкции зависят от ее сопротивления теплопередаче и составляют величину Э (эксплуатационные затраты). Суммарные затраты на строительство и эксплуатацию конструкции в течение Т лет (приведенные затраты) составляют:

П=К+Т.Э                                                       (3.4.)

Задача заключается в минимизации величины П. 1 м2 конструкции. Упрощенно можно считать, что  капитальные затраты линейно зависят от толщины утеплителя, а следовательно, от сопротивления теплопередаче ограждения. В то же время эксплуатационные затраты обратно пропорциональны сопротивлению теплопередаче, потому что, чем оно больше, тем меньше теплопотери, и тем меньше затраты на отопление. Чтобы найти минимум приведенных затрат и соответствующее ему экономически целесообразное приведенное сопротивление теплопередаче, надо продифференцировать выражение (3.4) и, приравняв нулю производную, найти искомую величину сопротивления  теплопередаче.

Графической интерпретацией этого расчета может служить рис. 11.

Описание: C:Documents and SettingsOlgammaDesktopмамедля методичкиpic11.jpg

Рис. 11.  К расчету приведенных затрат

3.4. Влияние влажности на теплозащитные качества наружного ограждения

3.4.1. Конструирование ограждающей конструкции с теплотехнической точки зрения

В общем случае ограждение состоит из конструктивного слоя, теплоизоляционного слоя и внутреннего и наружного фактурных слоев. Фактурные слои несут защитную функцию от непосредственного воздействия на внутренние слои ограждающей конструкции. Основную нагрузку в формировании тепловлажностного режима ограждения несут теплоизоляционный и конструктивный слои. Важным является вопрос: в какой очередности от наружной поверхности надо располагать теплоизоляционный и конструктивный слои.

            Конструктивным слоем является, как правило, материал с высокой плотностью ρк, обладающий высокой теплопроводностью λк и с малой паропроницаемостью μк. Теплоизоляционный слой, наоборот, имеет малую плотность ρт.и, малую теплопроводность λт.и и высокую паропроницаемость μт.и. То есть можно утверждать: ρк> ρт.и; λк> λт.и; μк < μт.и.

            Для ответа на поставленный выше вопрос рассмотрим два двухслойных ограждения, состоящих из одинаковых конструктивного и теплоизоляционного слоев. Толщина конструктивного слоя в обоих ограждениях одинакова, также как и толщина теплоизоляционных слоев. Отличаются стены только перестановкой слоев.  Оба ограждения находятся в равных условиях: температура tн и парциальное давление водяных паров ен наружного воздуха, а также температура tв и и парциальное давление водяных паров ев внутреннего воздуха одинаковы для обоих ограждений.

Построим распределения температуры по сечению каждой стены (рис.12) , и по полученным значениям температур определим давления насыщения Е. Построим также линию изменения парциального давления водяных паров е по сечению стен. Из рис. 12 видно, что значения потенциала переноса влаги – парциального давления водяных паров – выше внутри помещения, чем снаружи, что говорит о потенциальном движении влаги изнутри наружу. Следовательно, при необходимости устройства пароизоляции, она должна размещаться ближе к внутренней поверхности ограждения. Кроме того, для уменьшения потока влаги в ограждение без устройства пароизоляции следует внутренние фактурные слои делать плотными, а наружные паропроницаемыми, чтобы не мешать пару выходить в наружный воздух.

Если линии Е и е пересекаются, это говорит о том, что в месте где парциальное давление е оказалось выше давления насыщенных водяных паров Е (чего физически быть не может),происходит конденсация водяного пара. 

Из рисунка видно, что в случае расположения теплоизоляционного слоя с внутренней стороны, риск выпадения конденсата выше. Следовательно, слой утеплителя необходимо располагать ближе к наружной поверхности ограждающей конструкции.

Описание: C:Documents and SettingsOlgammaDesktopмамедля методичкиpic-12.jpg

Рис.12. Кривые распределения температуры t (1), парциального давления водяных паров е (2) и давления насыщения Е (3) по толщине двухслойного ограждения с наружной (а) и внутренней (б) теплоизоляцией (вертикальными линиями заштрихована область, где из построения Е оказалось меньше е, что говорит о зоне возможной конденсации в толще заштрихованной  области

Такое расположение приводит к следующим преимуществам:

1. Снижается возможность выпадения конденсата внутри ограждающей конструкции, отпадает необходимость ставить пароизоляцию с внутренней стороны ограждения.

2. Стык конструктивного и теплоизоляционного слоев находится всегда в зоне положительных температур, что исключает образование и оттаивание льда и, как следствие, отслаивание утеплителя от конструктивного слоя.

3.  Несущие конструкции здания или сооружения находятся при стабильных температурах и подвергаются незначительным температурным деформациям.

4. Ограждения более теплоустойчивы как к воздействию суточных колебаний параметров наружной среды, так и к колебаниям теплопоступлений от внутренних  тепловых источников.

3.4.2. Плоскость возможной конденсации.

 Требуемые сопротивления паропроницанию ограждения

Требуемые сопротивления паропроницанию ограждения между внутренней средой и плоскостью возможной конденсации, , выполняется в соответс­твии с [1]. Плоскость возможной конденсации в однородной (однослойной) ограждающей конструкции располагается на расстоянии, равном 2/3 толщины конструкции от ее внутренней поверхности, а в многослойной конструкции совпадает с наружной поверхностью утеплителя. Требуемые сопротивления паропроницанию нормируются исходя из:

- из условия недопустимости накопления влаги в ограждающей  конструкции за годовой период эксплуатации по формуле: 

 Па,                                        (3.5.)

где:  ев – парциальное давление водяных паров в воздухе помещения, Па, по п. 5.1.3;

Е – парциальное давление водяного пара, Па, в плоскости возможной конденсации за годовой период эксплуатации, определяемое по формулде

Е = (Е1.z1 + E2.z2 + E3.z3)/12;                                               (3.6.)

E1, E2, E3 -  парциальное давление водяного пара, Па, принимаемое по температуре в плоскости возможной конденсации, устанавливаемой при средней температуре наружного воздуха соответственно зимнего, весенне-осеннего и летнего периодов (при расчете Е3 для летнего периода температура внутреннего воздуха должна приниматься не ниже средней температуры наружного воздуха для этого периода.

z1, z2, z3 – продолжительность, мес, зимнего, весенне-осеннего и летнего периодов года, определяемая по табл. 1 с учетом следующих условий:

а) к зимнему периоду относятся месяцы со средними температурами наружного воздуха ниже минус 5 оС;

б) к весенне-осеннему периоду относятся месяцы со средними температурами наружного воздуха от минус  5 оС до плюс 5 оС;

в) к летнему периоду относятся месяцы со средними температурами воздуха выше плюс 5 оС;   

Rп,нар  –  сопротивление паропроницанию, м2.чПа/мг, части ограждающей конструкции, расположенной между наружной средой и плоскостью возможной конденсации.

- из условия ограничения влаги в ограждающей конструкции  за  период  с отрицательными среднемесячными температурами наружного воздуха по формуле:

,                                            (3.7.)

где:   Ео – парциальное давление водяного пара, Па, в плоскости возможной конденсации, определяемое при средней температуре наружного воздуха периода месяцев с отрицательными средними месячными температурами;

 zo –  продолжительность, сут, периода влагонакопления, принимаемая равной периоду с отрицательными средними месячными температурами наружного воздуха по [9]                                (19)аружной стены Roтружное ограждени. упрощенно ьная панель. то-конвективного теплообмен;

ρув – плотность материала увлажняемого слоя, кг/м3;

 δув – толщина увлажняемого слоя ограждающей конструкции, м, принимаемая равной 2/3 толщины однородной (однослойной) стены или толщине теплоизоляционного слоя (утеплителя) многослойной ограждающей конструкции;

Δw ув – предельно допустимое приращение расчетного массового отношения влаги в материале увлажняемого слоя, %, за период влагонакопления , принимаемое по [1]:  ен1 – среднее парциальное давление водяного пара наружного воздуха, Па, периода месяцев с отрицательными среднемесячными температурами, определяемое по [9].

3.4.3.  Тепловлажностные условия эксплуатации ограждающих конструкций здания

Влажностное состояние материалов в ограждающих конструкциях зданий зависит от климата района строительства и от влажностного режима помещений. Различные сочетания наружных и внутренних влажностных режимов формируют условия эксплуатации ограждающих конструкций.    Принято выделять две градации условий: А и Б. Условиям эксплуатации А соответствуют сочетания сухого или нормального влажностного режима помещения (по п. 3.2) с сухой зоной района строительства (по п. 3.1.5), а так же сухого режима помещения с нормальной климатической зоной влажности. Все остальные сочетания влажностного режима помещения и климатических зон влажности формируют условия эксплуатации Б, что отражено в  [4].

Рекомендуемые [CП] значения λ приняты при температуре, равной 25 оС. Для различных строительных материалов с указанием их плотности нормативные значения λ, соответствующие условиям эксплуатации А и Б, приведены в ряде документов [9]. При этом в таблице указана весовая влажность материала, соответствующая условиям эксплуатации.

3.5. Воздухопроницаемость наружных ограждений

3.5.1. Основные положения

Воздухопроницаемостью называется свойство строительных материалов и ограждающизх конструкций пропускать сквозь себя поток воздуха, воздухопроницаемостью считают также расход воздуха в кг, который проходит через 1м2 ограждения за час G, кг/(м2.ч).

Воздухопронием через ограждения называют процесс проникновения воздуха сквозь их неплотности. Проникновение воздуха снаружи внутрь помещений называется инфильтрацией, а из помещения наружу – эксфильтрацией.

Различают два типа неплотностей, через которые осуществляется фильтрация воздуха: поры строительных материалов и сквозные щели. Щели образуют стыки стеновых панелей, щели в переплетах окон и в местах прилегания окна к оконной коробке и т. д.  Кроме сквозной поперечной фильтрации, при которой воздух проходит через ограждение насквозь в направлении. перпендикулярном поверхности ограждения, существует, по терминологии Р.Е.Брилинга [14], еще два вида фильтрации – продольная и внутренняя.

Вообще говоря, воздухопроницаемостью обладают все наружные ограждения, но в расчете теплопотерь обычно учитывается только инфильтрация через окна, балконные двери и витражи. Нормы плотности остальных ограждений исключают возможность сквозной воздухопроницаемости, ощутимо влияющей на тепловой баланс помещения.

Однако, у современных наружных стен в слоях из минеральной ваты, пенополистирола или других вспененных материалов может наблюдаться продольная фильтрация [15], которая местно снижает приведенное сопротивление этих конструкций за счет выноса фильтрующимся воздухом теплоты в атмосферу.  

Инфильтрация и эксфильтрация и, вообще, любая фильтрация воздуха возникают под воздействием перепадов полных давлений воздуха  P, Па, с разных сторон ограждения. Разность давлений воздуха изнутри здания и снаружи объясняется, во-первых, различной плотностью холодного наружного воздуха и теплого внутреннего – гравитационной составляющей и, во-вторых, действием ветра, создающего положительное дополнительное давление в набегающем потоке с наветренной стороны и разрежение с подветренной – ветровой составляющей.  

3.5.2. Разность давлений на наружной и внутренней поверхности ограждений

Известно, что в столбе газа статическое гравитационное давление переменно по высоте. Гравитационное давление Рграв, Па, в любой точке наружного воздуха на высоте h от поверхности земли, равно:

                                                                        (3.9.)

где Ратм –     атмосферное давление на уровне условного ноля отсчета, Па;

g – ускорение свободного падения, м/с2;

ρн – плотность наружного воздуха, кг/м3.

Ветровое давление Pветр, Па, в зависимости от направления ветра на разных поверхностях здания будет различным, что в расчетах учитывается аэродинамическим коэффициентом С, показывающим какую долю от динамического давления ветра составляет статическое давление на наветренном, боковых и подветренном фасадах. Избыточное ветровое статическое давление на здание пропорционально динамическому давлению ветра ρн.v2/2 при его скорости v, м/с.

Скорости ветра измеряются на метеостанциях на высоте 10 м от земли на открытой местности. В застройке и по высоте скорость ветра изменяется. Для учета изменения скорости ветра в различных типах местности и на разной высоте применяется коэффициент kдин, значения которого регламентированы СНиП 2.01.07-85* [16]. Коэффициент kдин, учитывающий изменение ветрового давления по высоте h, там представлен в зависимости от типа местности. Принимаются следующие типы местности:

А – открытые побережья морей, озер и водохранилищ, пустыни, степи, лесостепи, тундра;

В – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;

С – городские районы с застройкой зданиями высотой более 25 м.

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h – при высоте сооружения h до 60 м и 2 км – при большей высоте.

В соответствии с вышесказанным ветровое давление на каждом фасаде равно

                                                    (3.10)

где    rн - плотность наружного воздуха, кг/м3;

v - скорость ветра, м/с;

c- аэродинамический коэффициент на расчётном фасаде;

kдин- коэффициент учета изменения скоростного давления ветра в зависимости от высоты здания, принимаемый по [16].

В соответствии со СНиП 2.01.07-85* [16] для большинства зданий величина аэродинамического коэффициента на наветренной стороне равна cн=0,8, а на подветренной –  cз= -0,6.

Так как гравитационное и ветровое давления независимы друг от друга, для нахождения полного давления наружного воздуха Рнар на здание, их складывают:

                          .                       (3.11) 

За условный ноль давления Русл, Па, по предложению В.П.Титова [17]  принимается абсолютное давление на подветренной стороне здания на уровне наиболее удаленного от поверхности земли элемента здания, через который возможно движение воздуха (верхнее окно подветренного фасада, вытяжную шахту на кровле).

,                                     (3.12)

где cз - аэродинамический коэффициент, соответствующий подветренной стороне здания;

Н - высота здания или высота над землей верхнего элемента, через который возможно движение воздуха, м.

Тогда полное избыточное давление Рн, Па, формирующееся в наружном воздухе в точке на высоте h здания, определяется по формуле:

                      (3.13)

В каждом помещении создается свое полное избыточное внутреннее давление, которое складывается из давления, сформированного различным давлением на фасадах здания Рв, Па, и гравитационного давления Рграв,в, Па. Так как в здании температура воздуха всех помещений приблизительно одинакова, внутреннее гравитационное давление зависит только от высоты центра помещения h:

                                             (3.14)

где rв – плотность внутреннего воздуха, кг/м3.

Для простоты расчетов внутреннее гравитационное давление принято относить к наружному давлению со знаком минус

                  (3.15)

 

Этим за пределы здания выносится переменная гравитационная составляющая, и поэтому полное давление в каждом помещении становится постоянным по его высоте.

Плотность воздуха ρ, кг/м3, может быть определена по эмпирической формуле:

,                                                             (3.16)

где t – температура воздуха.     

Величина внутреннего давления Pв  может быть различной  для  одинаково ориентированных помещений одного этажа в силу того, что для каждого помещения формируется свое значение внутреннего давления. Определение внутренних давлений в помещениях  является задачей полного расчета воздушного режима здания, который довольно трудоемок. Но для упрощения расчета внутреннее давление Pв принято приравнивать к давлению в лестничной клетке.

Существуют упрощенные методы расчета внутреннего давления в здании. Наиболее распространен расчет, справедливый для зданий с равномерно распределенными окнами на фасадах, когда за условно постоянное внутреннее давление в здании принимается полусумма ветрового и гравитационного давления по выражению

                                               (3.17)

Второй, более громоздкий способ расчета величины Pв, Па, предложенный в [36], отличается от первого тем, что ветровое давление усредняется по площадям фасадов. Выражение для внутреннего давления при рассмотрении одного из фасадов в качестве наветренного принимает вид:

,               (3.18)

где   cн, cб, cз - аэродинамические коэффициенты на наветренном, боковом и подветренном фасадах;

Aн, Aб, Aз - площади окон и витражей на наветренном, боковых и подветренном фасадах, м2.

Описание: EnergoPic1

Рис. 13. Формирование воздушных потоков в многоэтажном здании со сбалансированной механической вентиляцией

В расчетах теплопотерь учитывается, что каждый фасад может быть наветренным. Следует обратить внимание на то, что величина внутреннего давления Pв, принимаемая по (10), получается различной для каждого фасада. Эта разница тем заметнее, чем больше отличается плотность окон и витражей на различных фасадах. Для зданий с равномерным распределением окон по фасадам величина Pв, приближается к получаемой по (9). Таким образом, использование формулы (10) для расчета внутреннего давления оправдано в случаях, когда распределение световых проемов по фасадам явно неравномерно или когда рассматриваемое здание примыкает к соседнему, или один фасад или его часть не имеют окон совсем.

Разность наружного и внутреннего давлений по разные стороны ограждения на наветренном фасаде на любой высоте h с учетом формулы (3.15) равна:

                                          (3.19)

Разность давлений P для окон одного фасада разных этажей будет отличаться только величиной гравитационного давления (первое слагаемое), зависящего от разности Н-h отметок  верхней точки здания, принятой за ноль отсчета, и центра рассматриваемого окна. На рис. 13 показана картина распределения потоков в здании со сбалансированной вентиляцией

3.5.3. Воздухопроницаемость строительных материалов

Строительные материалы в основной своей массе являются пористыми телами.  Размеры и структура пор у различных материалов неодинакова, поэтому воздухопроницаемость материалов в зависимости от разности давлений проявляется по-разному.

На рис. 14 показана качественная картина зависимости воздухопроницаемости G от разности давлений ΔР для строительных материалов, приведенная К.Ф.Фокиным [2].

Описание: C:Documents and SettingsOlgammaDesktopмамедля методичкиpic14.jpg

Рис.14: Влияние пористости материала на его воздухопроницаемость 1 – материалы с равномерной пористостью (типа пенобетона); 2 – материалы с порами различных размеров (типа засыпок); 3 – маловоздухопроницаемые материалы ( типа древесины, цементных растворов), 4 – влажные материалы.

 Прямолинейный участок от 0 до точки а на кривой 1 свидетельствует о ламинарном движении воздуха по порам материала с равномерной пористостью при малых значениях разности давлений. Выше этой точки на криволинейном участке происходит турбулентное движение. В материалах с разными размерами пор движение воздуха турбулентно даже при малой разности давлений, что видно из кривизны линии 2. В маловоздухороницаемых материалах, напротив, движение воздуха по порам ламинарно и при довольно больших разностях давлений, поэтому зависимость G от ΔР линейна при любой разности давлений (линия 3). Во влажных материалах (кривая 4) при малых ΔР, меньших определенной минимальной разности давлений ΔРмин, воздухопроницаемость отсутствует, и лишь при превышении этой величины, когда разность давлений окажется достаточной для преодоления сил поверхностного натяжения воды, содержащейся в порах материала, возникает движение воздуха. Чем выше влажность материала, тем больше величина ΔРмин.

При ламинарном движении воздуха в порах материала справедлива зависимость

,                                                                 (3.20)

где i – коэффициент воздухопроницаемости материала, кг/(м.Па.ч);

      δ – толщина слоя материала, м.

Коэффициент воздухопроницаемости материала аналогичен коэффициенту теплопроводности  и показывает степень воздухопроницаемости материала, численно равную  потоку воздуха в кг, проходящему сквозь 1 м2 площади, перпендикулярной направлению потока, при градиенте давления, равном 1 Па/м.

            Величины коэффициента воздухопроницаемости для различных строительных материалов отличаются друг от друга значительно. Например, для минеральной ваты i  ≈ 0,044 кг/(м.Па.ч), для неавтоклавного пенобетона i  ≈ 5,3.10-4 кг/(м.Па.ч), для сплошного бетона i  ≈ 5,1.10-6 кг/(м.Па.ч),

При турбулентном движении воздуха в формуле (12) следует заменить ΔР на ΔРn. При этом показатель степени n изменяется в пределах 0,5 – 1. Однако на практике формула (3.20) применяется и для турбулентного режима течения воздуха в порах материала.

3.5.4. Фильтрация воздуха через ограждения

Следует иметь в виду влияние на воздухопроницаемость конструкции, имеющиеся в ней какие-либо включения. Например, в кладке из кирпича или ячеистобетонных блоков необходимо оценивать воздухопроницаемость швов, а в дощатой обшивке, воздухопроницаемость щелей между отдельными досками. Кроме того экспериментально доказано

В [4]  приведены значения сопротивления воздухопроницанию для слоев некоторых материалов и конструкций.

Фильтрация холодного наружного воздуха в ограждение вызывает увеличение потерь теплоты и снижение температуры в толще ограждения за счет того, что часть тепла, проходящего через ограждающую конструкцию, затрачивается на нагревание фильтрующегося воздуха.

Дифференциальное уравнение одномерного температурного поля многослойной стенки при наличии в ней фильтрации с расходом G,  кг/(м2.ч) и при отсутствии сопротивлений фильтрационному потоку на границах материальных слоев,  имеет вид:

,                                                    (3.21)

где      t – температура, изменяющаяся по толщине стенки, оС;

            с – удельная теплоемкость воздуха, с=1006 Дж/(кгС);    

            R – термическое сопротивление

3.5.5. Требуемое сопротивление воздухопроницанию окон, балконных дверей, витражей и световых фонарей жилых, общественных и производственных зданий в соответствии с [2] должно быть не менее нормируемого сопротивления воздухопроницанию Rинфтр, м2.ч/кг:

                                                   (3.22)

где

Gn – нормируемая воздухопроницаемость ограждающих конструкций, кг/(м2.ч);

∆Po- разность давлений воздуха на наружной и внутренней поверхностях светопрозрачных ограждений, при которой определяется сопротивление воздухопроницанию, ∆Po= 10 Па;

∆P- разность давлений воздуха на наружной и внутренней поверхностях светопрозрачных ограждений, которая формируется по разные стороны рассматриваемого окна.

Нормируемая воздухопроницаемость – это максимальная разрешенная воздухопроницаемость конструкции при любых погодных условиях, в которых может находиться здание, принимаемая в соответствии со СНиП [1]. Например, для жилых и общественных зданий допускается проникновение через окно не более 5 кг/(ч.м2) при деревянных переплетах и 6 5 кг/(ч.м2) при металлических или пластиковых.

Для определения расчетной разности давлений при  нахождении требуемого сопротивления воздухопроницанию окна в [1] заложена  преобразованная формула (3.19). Наибольшая разность давлений наблюдается в холодный расчетный период на окнах первого этажа, расположенных на наветренном фасаде. Для них расчетная разность давлений может быть получена  подстановкой (3.17) в (3.19) при условии, что h, расчетная высота, м, от уровня земли до центра рассматриваемого окна, близа к 0. Тогда:

                                  

∆P=(Н-h).н в).g +(ρн .v2/2).Кдин.нз)- Pв

≈Н.н в ).g +( ρн  .v2/2).Кдин.нз)-0,5 . H.н в).g – 0,5.( ρн.v2/2).Кдин.нз)        =

=0,5 . H.н в).g +0,25.в .v2).Кдин.нз)

В [2],  во-первых,  принято,  что расстояние от центра окна первого этажа до верха здания Н равно высоте здания от земли до верха здания (с запасом), во-вторых, что  для  большинства  зданий произведение (cн-cз).Kдин приближается к 1, в-третьих, величину ρext заменили на γext/g, и, в-четвертых, для некоторого запаса коэффициенты увеличили, и формула для расчета разности давлений при определении требуемого сопротивления воздухопроницанию приняла вид:

                                   ∆P=0,55.Н.нв ) +0,03 γн .v2,                                                                      (3.23)

где

v – расчетная скорость ветра – максимальная из средних скоростей ветра в январе по румбам v;

γн, γв – объемный вес наружного и внутреннего воздуха, Н/м3, γн = ρн.g; γв = ρв.g.

Объемный вес воздуха γ можно определить по эмпирической формуле

γ=(3463)/(273+t),                                                    (3.24)

где

t – температура, при которой рассчитывается γ. Для определения γн температура наружного воздуха принимается равной средней температуре наиболее холодной пятидневки обеспеченностью 0,92, а при расчете γв – равной расчетной температуре внутреннего воздуха tв.

Требуемое сопротивление воздухопроницанию окон в своей размерности не содержит размерности потенциала переноса воздуха – давления. Такое положение возникло из-за того, что в формуле (3.22) делением фактической разности давлений ∆P на нормативное значение давлений ∆Po=10 Па, требуемое сопротивление воздухопроницанию приводится к разности давлений ∆Po= 10 Па.

3.5.6. Приведенное сопротивление воздухопроницанию окон, балконных дверей, витражей и световых фонарей жилых, общественных и производственных зданий

Величина приведенного сопротивления воздухопроницанию окон жилых, общественных и производственных зданий Rинф, м2.ч/кг при ∆P= 10 Па, должна по сертификату на заполнение проема быть больше Rинфтр .

По показателям воздухопроницаемости ГОСТ 23166-99 [18] подразделяет оконные и балконные дверные блоки в деревянных, пластиковых и металлических переплетах на 5 классов. Основным признаком классификации является объемная воздухопроницаемость при ∆P=100 Па. В табл. 25 максимально допустимые воздухопроницаемости для выделенных классов по [18] пересчитаны в массовые воздухопроницаемости при ∆P=10 Па по СНиП [2], а также в соответствующие им сопротивления воздухопроницанию при разности давлений ∆P=10 Па.

Таблица 4

Классификация заполнений световых проемов по воздухопроницаемости

Класс

Объемная воздухопроницаемость, м3/(ч.м2), при ∆P=100 Па для

построения нормативных границ классов

Воздухопроницаемость, кг/(м2.ч) при ∆P=10 Па

Сопротивление воздухопроницанию,

м2.ч/кг при ∆P=10 Па

А

3

0,77

1,299

Б

9

2,31

0,433

В

17

4,36

0,229

Г

27

6,93

0,144

Д

50

12,83

0,078

3.5.7. Потребность в теплоте на нагревание инфильтрационного воздуха

Расход наружного воздуха, поступающего в помещения в результате инфильтрации в расчетных условиях, зависит от объемно-планировочного решения здания, плотности  окон, балконных дверей, витражей. Задача инженерного расчета для каждого помещения сводится к определению расхода инфильтрационного воздуха G, кг/ч, через отдельные ограждения помещения.  Так как проникновение воздуха в помещения через стены и покрытия невелики, ими обычно пренебрегают и рассчитывают только инфильтрацию через заполнения световых проемов, а также через закрытые двери и ворота, которые в обычном эксплуатационном режиме не открываются. В расчетах энергопотребления за отопительный период теплозатраты на нагревание инфильтрационного воздуха выполняется через все имеющиеся в здании входные двери и ворота в закрытом состоянии. Затраты теплоты на врывание воздуха через открывающиеся двери и ворота в расчетном режиме учитываются добавками к основным теплопотерям через входные двери и ворота.

Расчет должен выявить максимально возможную в расчетных условиях инфильтрацию, поэтому считается, что каждое окно или дверь находится на наветренной стороне здания.

Расчетная разность давлений ∆P, Па, для окна или двери каждого этажа рассчитывается по формуле (3.19) при расчетных температурах наружного и внутреннего воздуха (определяющих плотность наружного и внутреннего воздуха ρн и ρв) и скорости ветра.

Внутреннее давление Рв в таких расчетах обычно приближенно принимается по (3.17). Тогда разность давлений по разные стороны воздухопроницаемого элемента здания принимает вид:

∆P=(Н-h).н в).g +(ρн .v2/2).Кдин.нз)- Pв

=(Н-h).( ρн в).g +(ρext .v2/2).Кдин.нз)-0,5 . H.н в).g–0,5.н .v2/2).Кдин.нз)=

=0,5H.н в).g – h.н в).g + 0,25(ρн.v2/2).Кдин.нз),                                               (3.25)

где

Н – высота здания от земли до верха вытяжной шахты, м;

h – расстояние от земли до центра рассматриваемого воздухопроницаемого элемента в здании (окна, балконной двери, входной двери в здание, ворот, витража), м;

ρext, ρв – плотности, кг/м3, наружного и внутреннего воздуха, определяемые по формуле (3.16);

g – ускорение свободного падения g = 9,81 м/с2;

Кдин – коэффициент, с помощью которого учитывают изменение динамических свойств ветра в застройке в зависимости от высоты h, принимается по [16].;

сн, сз – аэродинамические коэффициенты на наветренном и подветренном фасадах, принимаемые в соответствии с п. 3.5.2.

Из формулы (3.25) видно, что при определенных соотношениях значений слагаемых формулы на верхних этажах может сформироваться отрицательная разность давлений  ∆P=Рн - Pв, что означает возможность инфильтрации.

Расход инфильтрационного воздуха Gинф, кг/(ч.м2), при этой разности давлений составит:

- через окна

Gинф=(1/Rинф,октр) .( ∆P/∆Po)2/3,                                                     (3.26)

- через двери и ворота

Gинф=(1/Rинф,двтр) .( ∆P/∆Po)1/2,                                                     (3.27)

где

Rинф,октр  – фактическое сопротивление воздухопроницанию окна, м2.ч/кг, при ∆P= 10 Па;

Rинф,двтр  – фактическое сопротивление воздухопроницанию двери и ли ворот, м2.ч/кг, при ∆P= 10 Па.

∆Po- разность давлений, принятая для определения требуемого сопротивления воздухопроницанию, ∆Po=10 Па.

В лекции "7 Правовое регулирование рекламы как особой формы доведения информации о товарах" также много полезной информации.

            Расход теплоты на нагревание инфильтрационного воздуха Qинф, Вт, определяется по формуле:

Qинф=0,28.Gинф.c.A.( tв - tн).k,                                                         (3.28)

где

с – теплоемкость воздуха, с=1,006 кДж/(кгС);

k – коэффициент учета влияния встречного теплового потока в воздухопроницаемых конструкциях, равный 0,7 – для окон и балконных дверей с тройными раздельными переплетами, 0,8 – для окон и балконных дверей с двойными раздельными переплетами, 0,9 – для окон и балконных дверей со спаренными переплетами, и 1 – для окон и балконных дверей с одинарными переплетами.

Расчеты показали, что через плотные окна в многоэтажных зданиях существует инфильтрация, которая доходит до 20% от трансмиссионных теплопотерь и должна быть учтена в тепловой нагрузке на отопление здания.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее