Популярные услуги

Главная » Лекции » Строительство » Лекции по обследованию зданий » Неразрушающие методы испытаний

Неразрушающие методы испытаний

2021-03-09СтудИзба

ЛЕКЦИЯ 10. Неразрушающие методы испытаний

В настоящее время неразрушающие методы широко используются для контроля и обеспечения качественного технологического процесса в целом ряде отраслей народного хозяйства: металлургии, машиностроении, химической промышленности и т.п. В сочетании с быстродействующими вычислительными устройствами применение неразрушающих методов дает возможность перейти к полной автоматизации производства с обеспечени­ем необходимого соблюдения качества продукции.

В строительном деле неразрушающие методы применяются глав­ным образом для контроля сварных металлоконструкций, при изготовлении железобетонных деталей и элементов и т. д. Неразрушающие методы кон­троля применяются и при освидетельствовании сооружений. Они являются весьма перспективными для контроля на поточных линиях на заводах строительных конструкций (в первую очередь железобетонных) не только для выявления уже допущенных дефектов и отступления от требований ТУ, но и прежде всего, для предупреждения самой возможности таких нару­шений.

По физическим принципам неразрушающих исследований раз­личают следующие основные методы:

1) при помощи проникающих сред (жидких, газообразных и др.)

2) механические методы испытаний;

3) акустические (ультразвуковые и более низких частот);

4) магнитные, электромагнитные и электрические;

5) при помощи ионизирующих излучений (рентгеновские, радиоизотопные);

Рекомендуемые материалы

6) радиодефектоскопия и инфракрасная дефектоскопия.

Методы проникающих сред

В резервуарах, газгольдерах, трубопроводах и других аналогичных конструкциях, требующих обеспечения не только прочности, но и плотности соединений, контроль осуществляют с помощью проникающих сред. Кроме применявшихся ранее испытаний водой и керосином, в настоящее время разработаны и другие приемы.

Испытания водой. Проверяемые емкости заполняются водой до отметки обычно несколько выше эксплуатационной. В закрытых сосудах давление жидкости повышается дополнительным нагнетанием воды или воздуха.

Гидростатическим давлением проверяются как плотность, так и прочность соединений и всего сооружения в целом. Контроль швов и соединений заливкой воды совмещается, таким образом, со статическим испытанием исследуемой емкости.

Отдельные швы металлоконструкций могут проверяться сильной струей воды из брандспойта, направленной под давлением примерно 1 атм нормально к поверхности шва. При наличии дефектов вода просачивается сквозь неплотности проверяемого соединения.

Проба керосином. Благодаря своей малой вязкости и незначитель­ному, но сравнению с водой, поверхностному натяжению керосин легко проникает через самые малые поры и выступает на противоположной по­верхности. При опробовании поверхность шва с одной стороны обильно смачивается или опрыскивается керосином. Для облегчения наблюдений шов заранее подбеливается водным раствором мела. На этом подсохшем светлом фоне отчетливо выявляются затем ржавые пятна и полосы, возни­кающие при просачивании керосина.

Проба сжатым воздухом. При наиболее простом применении дан­ного метода проверяемые швы обмазываются мыльной водой. С другой стороны шов обдувается сжатым воздухом, подаваемым из шланга под давлением порядка 4 атм нормально к исследуемому шву. В замкнутые емкости сжатый воздух подается внутрь их объема. Признаком дефектно­сти шва служит появление мыльных пузырей на обмазке.

Более совершенным является применение ультразвуковых «течеискателей», принцип работы которых основан на регистрации ультразвуко­вых колебаний, возникающих в местах нарушения сплошности, под дейст­вием вытекающей здесь под давлением струн газа (воздуха). С помощью течеискателей можно выявлять неплотности размером до 0,1мм при избы­точном давлении порядка 0,4 атм. Место нахождения дефекта определяется с точностью до 1,5…2см.

Проба вакуумом. Проверка вакуумом требует доступа к конст­рукции лишь с одной ее стороны, что является существенным преимуществом данного метода.

К шву приставляется металлическая кассета в виде плоской короб­ки без дна с прозрачным верхом, через который виден проверяемый шов. Вакуум-насосом со шлангом, присоединенным к кассете, в которой созда­ется небольшое разрежение, внешним воздушным давлением стенки кассе­ты, снабженные по их нижнему периметру мягкой резиновой прокладкой. прижимаются при этом к конструкции. Исследуемый шов предварительно должен быть смочен мыльным раствором. В местах нарушений плотности шва воздух, проникая сквозь эти неплотности, образует в мыльной пене отчетливо видные стойкие пузыри.

При сварке сосудов высокого давления и других особо ответствен­ных, требующих полной герметичности, конструкций для увеличения на­дежности контроля применяется проверка плотности соединений химиче­скими реагентами, например, воздушно-аммиачной смесью или другими газообразными соединениями, обладающими высокой проникающей способностью. Химические методы проверки плотности соединений обладают большой чувствительностью и дают возможность очень четко определять места нахождения дефектов, чем и обусловливается в наиболее серьезных случаях целесообразность применения этих более сложных приемов.

Механические методы испытаний

Рассматриваемые методы привнесены в область строительства из металловедения. Как известно, при испытаниях металла широко применяются так называемые «пробы на твердость». К ним относятся испытания путем вдавливания в поверхность металла стального шарика или алмаза (по Бринеллю, Роквеллу, Виккерсу и т.д.), измерения по упругому отскоку падающего шарика (испытания по Шору) и др.

Благодаря своей простоте, удобству и возможности быстрой про­верки состояния материала в целом ряде точек на поверхности конструк­ций эти косвенные методы нашли применение и при освидетельствовании сооружений. Полученные при этом данные переводятся в прочностные ха­рактеристики исследуемого материала по эмпирическим формулам или с применением соответствующих графиков и таблиц.

Следует при этом иметь в виду, что само понятие «твердость» не является столь же определенным физическим критерием сопротивления материала силовым воздействиям как прочность, деформативность. В зависимости от вида испытания на твердость выявляются различные фак­торы: в методе отскока (по Шору) - способность к упругой работе при на­личии поглощения части энергии деформирования; при вдавливании шари­ка по Бринеллю - пластические свойства на уровне предела текучести; при вдавливании алмаза - сопротивление значительному деформированию (на уровне предела прочности).

Оценка прочности металла

Наибольшее применение в строительной практике для оценки прочности металла имеет прибор Польди (рис.1) ударного действия.

Наконечником прибора является шарик 2 диаметром 10 мм из твердой закаленной стали, дающий при ударе отпечаток одновременно на исследуемом металле 1 и на стальном эталонном бруске 3, твердость кото­рого HBэт должна быть заранее определена. Для получения отпечатков ударяют молотком по верхнему торцу стержня 4.

Твердость НВ исследуемого металла испытываемой конструкции определится из соотношения

                                             НВ= HBэт                                  

где    D - диаметр стального шарика 2 (рис.2);

          d - диаметр отпечатка на поверхности исследуемого материала;

          dэт - то же. на эталонном бруске.

Рис. 1. Схема прибора Польди:

1 - исследуемый материал;

2-стальной шарик;

3- эталонный брусок;

4- ударный стержень;

5- обойма прибор

Рис.2. Отпечатки, получаемые с помощью прибора Польди:

1 - исследуемый материал;

2-стальной шарик;

3 — эталонный брусок

Нахождение НВ и определение прочности и марки металла произ­водятся с помощью соответствующих таблиц. Для термически обработан­ных легированных сталей вводится поправочный коэффициент.

С помощью прибора Польди можно получать, однако, лишь ориен­тировочные характеристики. Но и с учетом этого применение прибора практически полезно, в особенности в следующих случаях:

для ускоренной проверки однородности материала в различных элементах освидетельствуемых конструкций;

при отбраковке (проверке марок металла) поступающих заготовок.

Оценка прочности бетона

При косвенной оценке прочности бетона по твердостным характе­ристикам его поверхностного слоя приходится учитывать следующие факторы, усложняющие эту оценку:

1) большой разброс результатов испытаний на «твердость», обу­словленный неоднородностью структуры бетона. Для получения надежных данных необходимо увеличить число проверяемых на поверхности точек и статистически обработать результаты испытаний;

2) возможная карбонизация поверхностного слоя, повышающая показатели твердости, а также увлажнение поверхности, снижающее эти показатели;

3) возможность расхождения прочностных характеристик на по­верхности и в глубине массивных блоков. Это может быть проверено, на­пример, контрольным бурением с выемкой образцов с разной глубины, а также применением рассматриваемых далее неразрушающих способов.

Необходимость в простых, доступных для массового применения способов оценки качества бетона настолько настоятельна, что, несмотря на указанные затруднения, для суждения о прочности бетона по механическим характеристикам его поверхностного слоя предложен целый ряд приборов и приспособлений. Краткий обзор практически наиболее оправдавших себя и методически интересных приемов приводится ниже.

Оценка прочности бетона с помощью молотка КМ.Кашкарова.

Эталонный молоток К.П. Кашкарова схематически показан на рис. 3. Принцип его действия аналогичен рассмотренному выше прибору Польди с той разницей, что удар наносится взмахом самого эталонного молотка.

Рис. 3. Схема молотка К. П. Кашкарова:

1 - головка; 2 - рукоятка; 3 - эталонный стержень; 4 - стальной шарик; 5 - стакан; 6 - торец стержня 3; 7 - испытуемый материал; 8 - пружина

При ударе боек (стальной шарик диаметром S мм) оставляет на поверхности исследуемого бетона вмятину диаметром dб, а на эталонном стержне (круглого сечения из Ст. 3 диаметром 10 мм) - отпечаток диамет­ром dэт. Для десяти ударов, нанесенных по проверяемому элементу с уда ленными штукатурными и окрасочными слоями, определяется усредненное отношение dб/dэт; прочность бетона оценивается по корреляционной зави­симости между dб/dэт и пределом прочности бетона на сжатие, устанавли­ваемой экспериментально. При этом должны учитываться конкретные ус­ловия изготовления конструкции и твердения бетона, сроки испытаний, ше­роховатость, влажность и другие особенности состояния поверхности кон­струкции. Для эксплуатируемых сооружений указанная зависимость долж­ка быть уточнена на образцах, выбуренных из соответствующих элементов.

Эталонный молоток рекомендуется для разных операций: оценок отпускной прочности бетонных изделий на заводах железобетонных конст­рукций, прочности бетона при передаче напряжения от арматуры на бетон в предварительно напряженных железобетонных конструкциях, коэффици­ента изменчивости прочности бетона в изделиях и конструкциях (что осо­бенно существенно при освидетельствованиях сооружений) и т. д.

Одним из наиболее простых приспособлений для сравнительной оценки прочности бетона является молоток И. Л. Физделя. Ударная часть этого стального молотка весом 250 г заканчивается шариком из твердой стали, легко вращающимся в гнезде. По диаметру отпечатков, полученных при ударе, определяют прочность бетона по эмпирическому графику. Ре­зультаты, несмотря на их ориентировочность, все же полезны в производственных условиях. Пользование молотком при некотором навыке не вы­зывает затруднений.

Оценка прочности бетона склерометром. Приборы этого типа применяются главным образом за рубежом. Из их числа наиболее известен прибор Шмидта (Швейцария).

В этих приборах, так же как в ударнике Шора для металла, о ха­рактеристиках материала судят по величине отскока стального бойка. От­скок фиксируется указателем на шкале. Удар наносится не непосредствен­но по исследуемой поверхности бетона, а воспринимается наконечником прибора, прижатого к конструкции. Этот промежуточный стальной элемент необходим, поскольку величина отскока при резкой разнице модулей упру­гости соударяемых   материалов  становится трудносопоставимой. Удар осуществляется спуском пружины, а не свободным падением бойка, как у Шора, что позволяет испытывать любым образом ориентированные по­верхности. Прибор удобен в работе и дает довольно четкие результаты.

Оценка прочности древесины

Метод ударных отпечатков (А. Х.Шевцов). О прочности древе­сины сулят по диаметру отпечатка (вмятины), появляющегося на гладко оструганной поверхности исследуемого элемента при падении стального шарика диаметром 25 мм с высоты 50 см со специальной подставки. Для проб на вертикальных и наклонных гранях применяется спуск горизон­тально оттянутого шарика (рис.4). скрепленного с нитью длиной 50 см.

Диаметры отпечатка фиксируются с помощью белой и копи­ровальной бумаг, помещенных на исследуемую поверхность в месте удара. Для перехода от диаметра отпечатка к прочности материала пользуются экспериментальными кривыми, построенными для разных сортов древе­сины. Для учета влияния влажности вводится   поправочный коэффициент.

2. Основные этапы развития географии - лекция, которая пользуется популярностью у тех, кто читал эту лекцию.

Рис.4. Испытание ударом шарика по вер­тикальной поверхности деревянного эле­мента:

1- испытуемый элемент;

2- натянутая нить;

3- стальной шарик;

4- положение того же шарика в момент удара

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее