Характеристика жидкости по диаграмме сдвига
Лекция №2.
[
dV]=
+ div(
ω)]dV=
+ ω
+
div(
,ω) +
ωdiv
=
dV+
dS=
dV+
dV=>
=
+div
- уравнение Навье-Стокса в векторной форме
=
-P
Характеристика жидкости по диаграмме сдвига.
=>
=µ
- закон внутреннего трения Ньютона.
m>1 –дилатантные; m<1- псевдопластичные; m=1 - ньютоновские жидкости.
=
=
Рекомендуемые материалы
µ
=
=
-кажущийся коэффициент динамической вязкости.
=
+µ
- бингамовские жидкости
Данная система из 5 уравнений в декартовой системе координат- основное уравнение гидродинамики. Число неизвестных (ωx, ωy, ωz, ρi, P)- 5 равно числу записанных уравнений. Система замкнута. Требуется только запись условий однозначности (краевых условий: начальных и граничных).
Физический смысл: баланс сил- закон сохранения механической энергии системы.
Гидростатика
Система находящаяся в состоянии покоя или равномерного движения является статической, т.е.,
,
=0
(
dx+
dy+
dz);
dP=(
dx+
dy+
dz) –основное уравнение гидростатики.
Изобарическая поверхность- поверхность уровня. Тогда:
dP=0 =>dx+
dy+
dz=0 -уравнение поверхности уровня.
Поверхность уровня и давление в сосуде, вращающемся вокруг вертикальной оси.
=-g
При вращении образуется параболоид вращения.
+
=ρ[
dx+
dy+
dz]=ρ[
+
-g
]
P-=ρ[
g(z-
)]- давление в произвольной точке жидкости в сосуде.
Z=+
- yравнение поверхности уровня
h=
+
(H-
) – закон сохранения объема жидкости
2h=+H
H=+
=h-
Уравнение поверхности уровня z=+ h-
- параболоид вращения
Сила давления на боковую стенку сосуда
P=+ρgh – закон Паскаля. Т.к. давление с глубиной погружения меняется, то выделяем бесконечно малый элемент стенки площадью dS, погруженный на глубину h, записываем силу давления на него и интегрируем полученное уравнение:
=PdS=
dS+ρg
F=+
ρg
=
(
ρg
;
- координата центра тяжести стенки, т.к.
- статический момент площади dS относительно поверхности уровня.
Гидродинамика
Вывод выражений для дифференциала Бернулли, интеграла Бернулли (уравнения Бернулли)
Допущения:
1.Течение установившееся
=0
2.Течение осуществляется в поле сил тяжести.
=0,
=-g
3.Жидкость является идеальной
= const , µ=0
4.Течение является безвихревым.
ω=0 (ротор вихря)
+
=
+2
=
Записываем проекции уравнения Навье-Стокса на оси x,y,z, домножаем их соответственно на dx,dy,dz и складываем. Получаем:
½[dx+
dy+
dz]= - 1/ρ[
+
+
]-gdz
P=f(x,y,z), тогда имеем полные дифференциалы соответствующих выражений.
+
+ gdz= 0 => d(z+
+
)=0,- дифференциал Бернулли.
P, ω, z –давление, скорость, координата в точке – их истинное значение
Z+ +
= const= H- интеграл (уравнение) Бернулли
P- среднее давление, ω- средняя скорость, z- координата от живого сечения потока- усредненные параметры.
В идеальных жидкостях потенциальная энергия + кинетическая энергия неизменны.
Уравнение Бернулли (закон сохранения энергии)
Представление конвективной составляющей вектора скорости в уравнение Навье-Стокса разложением на поступательную и вращательную составляющие (уравнение Громеки-Лэмба)
Докажем, что +
=
+2
Обратите внимание на лекцию "19 Экзистенциализм".
Выражение для ротора вихря, вращающегося с угловой скоростью ω в декартовой системе
ð 2[ωxω͞ ]х=-
-
+
=
+
Напомним, что:
=
2[ωxω͞ ]=
+
+
-
=
+
, что и требовалось доказать.