Популярные услуги

Курсовой проект по деталям машин под ключ
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по ТММ в бауманке
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
Главная » Лекции » Инженерия » Процессы получения металлов » Подготовка железных руд к доменной плавке

Подготовка железных руд к доменной плавке

2021-03-09СтудИзба

2 подготовка железных руд к доменной плавке

2.1 Современная к схема подготовки руд к доменной плавке

Извлеченные из земных недр руды в большинстве случаев не могут быть непосредственно использованы в металлургическом производстве и проходят поэтому сложный цикл последовательных операций подготовки к доменной плавке. Отметим, что при добыче руды открытыми разработками в зависимости от расстояния между взрывными шпурами и размера ковша экскаватора величина крупных глыб руды может достигать 1000—1500 мм. При подземной добыче максимальный размер куска не превышает обычно 350 мм. Во всех случаях добываемая руда содержит и большое количество мелких фракций.

Независимо от последующей схемы подготовки руды к плавке вся добываемая руда проходит прежде всего стадию первичного дробления, так как величина крупных кусков и глыб при добыче намного превышает размер куска руды, максимально допустимый по условиям технологии доменной плавки. Техническими условиями на кусковатость в зависимости от восстановимости предусматривается следующий максимальный размер кусков руды: до 50 мм для магнетитовых руд, до 80 мм для гематитовых руд и до 120 мм для бурых железняков. Верхний предел крупности кусков агломерата не должен превышать 40 мм.

Рис. 25. Конструктивные схемы дробилок:

а — щековой; б — конусной; в — грибовидной; г — молотковой; д — валковой; 1 — неподвижная щека с осью вращения; 3,4эксцентриковый вал; 5 — шатун; 6 ~ шарнирная опора задней распорной щеки; 7 — пружина; 8,9механизм регулировки ширины разгрузочной щели; 10 ~ тяга замыкающего устройства; /; — станина; 12 — неподвижный конус; 13 — подвижный конус; 14 — траверса; 15 — шарнир подвески подвижного конуса; 16 — вал конуса; 17 — приводной вал; 18 — эксцентрик; 19 — амортизационная пружина; 20 — опорное кольцо; 21 — регулирующее кольцо; 22 — подпятник конуса; 23 — ротор; 24 — отбойные плиты; 25 — колосниковая решетка; 26 — молоток; 27 — основная рама; 28 — дробящие валки

На рис. 24 показаны наиболее распространенные схемы установки дробилок на дробильно-сортировочных фабриках. Схемами а и б решается одна и та же задача дробления руды от <600 до <200 мм. Степень дробления руды (i) в обоих случаях составляет 600 : 200 = 3. Однако в исходной руде содержится некоторое количество фракции <200 мм, не нуждающейся в дроблении и занимающей часть рабочего пространства дробилки, снижая ее производительность. Эта фракция в результате частичного дробления переизмельчается, увеличивая выход мелочи и расход электроэнергии на дробление. По схеме б фракция <200 мм отделяется от руды перед дробилкой. При этом осуществляется принцип «не дробить ничего лишнего». Схемы а и б характеризуются тем, что крупность дробленого продукта не проверяется, т. е. схемы «открытые». Опыт показывает, что в дробленом продукте всегда имеется небольшое количество кусков, размер которых несколько превышает заданный. В «закрытых» («замкнутых») схемах дробленый продукт вновь направляется на грохот для отделения недостаточно измельченных кусков с последующим их возвратом в дробилку (рис. 24, в). При «закрытых» схемах дробления соблюдение верхнего предела крупности дробленого продукта гарантировано.

Рекомендуемые материалы

Устройство дробилок показано на рис. 25. Разрушение кусков руды в них происходит в результате раздавливающих, раскалывающих, истирающих усилий и ударов. В щековой дробилке Блэка (рис. 25, а) материал, вводимый в дробилку сверху, раздавливается качающейся 2 и неподвижной / щеками, а в конусной дробилке Мак-Кули — неподвижными 12 и вращающимся внутренним 13 конусами. Вал конуса 13 входит во вращающийся эксцентрик 18. В щековой дробилке только один ход подвижной щеки является рабочим, во время обратного хода щеки часть дробленого материала успевает выйти из рабочего пространства дробилки через нижнюю выпускную щель.

Производительность наиболее крупных щековых дробилок не превышает 450—500 т/ч. Характерным для щековых дробилок являются случаи запрессовки рабочего пространства при дроблении влажных глинистых руд. Кроме того, щековые дробилки не должны применяться для дробления руд, имеющих плитчатое, сланцевое строение куска, так как отдельные плитки в случае ориентации их длинной оси вдоль оси щели выдачи дробленого материала могут проходить через рабочее пространство дробилки не разрушаясь. Питание щековых дробилок материалом должно быть равномерным, для чего пластинчатый питатель устанавливают со стороны неподвижной щеки дробилки. Обычно щековые дробилки применяют для дробления крупных кусков руды. Расход электроэнергии на дробление 1 т руды в этих установках может колебаться от 0,3 до 1,3 кВт.ч.

В конусной дробилке ось вращения внутреннего конуса не совпадает с геометрической осью неподвижного конуса, т. е. в любой момент дробление руды происходит в зоне приближения поверхностей внутреннего и наружного неподвижного конусов. При этом в остальных зонах происходит выдача дробленого продукта через кольцевую щель между конусами. Таким образом дробление руды в конусной дробилке осуществляется непрерывно. Достигаемая производительность составляет 3500—4000 т/ч при расходе электроэнергии на дробление 1 т руды 0,1—1,3 кВт-ч.

Конусные дробилки с успехом можно применять для руд любого типа, в том числе со слоистым, плитчатым строением куска, а также для глинистых руд. Конусные дробилки не нуждаются в питателях и могут работать «под завалом», т. е. с рабочим пространством, полностью заполняемым рудой, поступающей из расположенного выше бункера. Короткоконусная грибовидная дробилка Саймонса (рис. 25, в) отличается от обычной конусной дробилки удлиненной зоной выдачи дробленого продукта, обеспечивающей полное дробление материала до заданного размера кусков.

В молотковых дробилках дробление кусков руды осуществляется главным образом (рис. 25, г) под действием ударов по ним стальных молотков, закрепленных на быстровращающемся валу. На металлургических заводах в таких дробилках измельчают известняк, используемый затем в агломерационных цехах. Хрупкие материалы (например, кокс) могут быть измельчены в валковых дробилках (рис. 25,д).

После первичного дробления богатая малосернистая руда фракции >8 мм может использоваться доменными цехами, фракция <8 мм, называемая «аглорудой», подвергается окускованию на агломерационных фабриках. Загрузка мелких фракций руды в доменные печи резко ухудшает технико-экономические показатели доменной плавки. В большом количестве мелочь выносится из печи восходящим потоком доменного газа и оседает и пылеулавливателях. Затем ее направляют на аглофабрику. Часть мелких фракций все же усваивается печью, резко ухудшим газопроницаемость столба шихты, так как мелкие частицы заполняют пространство между более крупными кусками. Необходимо помнить, что отделение мелочи от доменной шихты во всех случаях дает значительный технико-экономический эффект, улучшая ход процесса, стабилизируя вынос пыли на постоянном минимальном уровне, что в свою очередь способствует постоянству нагрева печи и снижению расхода кокса.

Рис. 26. Шаровая мельница (а) и мельница для бесшарового помола (б)

Богатые сернистые руды дробят до крупности <8 мм и подвергают агломерации, в ходе которой удаляется из руд 98 % сульфидной серы. Бедные руды измельчают до крупности <74 мкм, чтобы разрушить сростки рудного минерала с пустой породой, и направляют на обогащение.

На обогатительных фабриках тонкое измельчение руды перед обогащением производят в шаровых мельницах или в мельницах бесшарового помола. Шаровые мельницы (рис. 26, а) представляют собой пустотелые барабаны, футерованные плитами 1 из износоустойчивой стали Гатфилда с полыми цапфами 2, опирающимися на подшипники 3. Измельчаемый материал крупностью 5—12 мм вместе с водой вводится в одну из цапф 4, а пульпа (измельченный продукт с водой) выводится через противоположную цапфу. Рабочее пространство мельницы почти наполовину заполнено стальными или чугунными шарами 5, которые при вращении барабана приводом через зубчатый венец 6 движутся в мельнице в каскадном или водопадном режиме. Кусочки руды, испытывая удары падающих шаров, раскалываются, раздавливаются и истираются. Производительность крупных шаровых мельниц составляет 150—200 т/сут. Расход электроэнергии для измельчения 1 т руды до крупности <74 мкм близок к 14—15 кВт-ч.

В последние годы распространение получил бесшаровой помол. Сущность процесса заключается в том, что в мельницу (рис. 26, б) загружают только мелочь и крупные куски руды, которые в этом случае играют роль дробящих шаров. В мельнице типа «Аэрофол» крупные и мелкие куски руды вводят во вращающийся барабан 1 через питатель 2 вместе со сжатым воздухом. Образующийся в барабане измельченный продукт уносится воздухом через пустотелую цапфу в шахту выдачи 3, а затем скапливается в пылеулавливателях. Если используется горячий воздух, то наряду с дроблением осуществляется и подсушка материала.

Мелочь от более крупных кусков руды отделяется на дробильно-сортировочных фабриках с помощью грохотов (рис.27). Конструкция современного вибрационного грохота включает раму с сеткой, подвешенную на пружинах или тягах, на которой установлены вращающиеся диски с неуравновешенными грузами. Вращение дисков осуществляется с помощью ременной передачи от электромотора. Рама грохота колеблется с большой частотой (до 2000 колебаний в минуту), что обеспечивает отделение до 97 % всей содержащейся в руде мелочи (эффективность грохочения 97 %). При отсеве мелочи <8 мм от руды производительность вибрационных грохотов достигает 17 м3/(м2-ч).

рис. 27. Вибрационный грохот

Обогащением руды называется операция, увеличивающая содержание железа или снижающая содержание вредных примесей в руде. Обогащение позволяет существенно повысить содержание железа в шихте доменных печей, улучшить условия восстановления железа, уменьшить выход шлака, улучшая тем самым ход печи и снижая расход кокса при возрастающей производительности. Установлено, что в средних условиях плавки повышение содержания железа в шихте на 1 % позволяет увеличить производительность печи на 2—2,5 % при снижении удельного расхода кокса на 2—2,5 %.

Получаемые на обогатительных фабриках концентраты содержат до 65—68 % Fe. Эффективность обогащения необходимо оценивать по всем показателям обогащения одновременно. Так, высокое содержание железа в концентрате может сопровождаться низким выходом концентрата и низким извлечением железа в концентрат. Наоборот, высокий выход концентрата связан с пониженным содержанием железа в нем и т. д.

Наиболее древним способом обогащения является мойка руд, в ходе которой на дробленую руду во вращающемся барабане направляется сильная струя воды, способная отделить глинистую пустую породу от рудного вещества. На концентрационных столах, в отсадочных машинах для разделения рудных минералов и пустой породы используется различие плотности этих компонентов руды: 2,65 г/см3 для кварцита и 5,26 г/см3 для гематита. Обогащение флотацией основано на неодинаковых гидрофильности и гидрофобности минералов. Наибольшее распространение получил метод магнитной сепарации руды, когда измельченную руду пропускают через магнитное поле. Удельная магнитная восприимчивость магнетита высокая (до 97350-10~6 см3/г), в то время как кварц относится к диамагнетикам (—0,47-10~в см3/г). В барабанном магнитном сепараторе Эдисона (рис. 28, а) неподвижный электромагнит 1 располагается внутри вращающегося барабана 2, на внешнюю поверхность которого подаются обогащаемая руда с водой. Частицы пустой породы оседают на дно бака, а частицы магнетита притягиваются к поверхности вращающегося барабана и могут быть смыты с нее только вне магнитного поля, что позволяет выделить концентрат магнитной сепарации (шлих). На рис. 28, б показана также конструкция ленточного магнитного сепаратора для сухой сепарации сильно магнитных руд. Конструкция включает транспортерную / и убирающую 2 ленты и делительную перегородку 3. Производительность магнитных сепараторов достигает 45—50 т/ч при обогащении тонкоизмельченных магнетитовых руд.

а                                                                                                                                           б

Рис. 28. Магнитные сепараторы:

а — барабанный для мокрой сепарации; б — ленточный для сухой сепарации

Концентраты обогащения железных руд представляют собой весьма тонкий порошок и не могут быть загружены в доменные печи без предварительного окускования на фабриках окатышей или агломерационных фабриках.

Много внимания в металлургической промышленности уделяется усреднению химического состава железных руд. Содержание железа в руде и агломерате, загружаемых в данный момент в доменные печи, не должно отличаться от среднего арифметического за длительный период более чем на ±0,5 % (абс).

Рис. 29. Усреднение на рудном дворе доменного цеха:

1 — вагоноопрокидыватель; 2 — рудная траншея; 3 — рудный мостовой грейферный кран; 4 — грейферная тележка; 5 — горизонтальные слои штабеля (формируются при укладке штабеля); 6 — зона отбора руды для доменных печей (поперек горизонтальных слоев)

В современных условиях более 90 % рудной части шихты доменных печей состоит из агломерата, поэтому усреднение руды ведется, на агломерационных фабриках. Прежде доля неподготовленной руды в доменной шихте была значительной. По этой причине, а также для создания запасов руды на зимнее время доменные цехи имели обширные рудные дворы (рис. 29).

Прибывающая руда разгружается вагоноопрокидывателем / в рудную траншею 2, откуда мостовым грейферным краном 3 укладывается в штабель высотой до 17 м. Расстояние между длинной и короткой ногами крана, определяющее ширину штабеля, достигает 115 м. По длине рудный двор занимает весь фронт доменных печей. Число кранов обычно в два раза меньше числа доменных печей. Вся руда, загружаемая в печи, проходит усреднение на рудном дворе. Для этого руду из рудной траншеи в формируемый штабель укладывают послойно. Машинист крана должен рассыпать руду по возможности более тонким слоем на всю длину штабеля, перемещая по мосту тележку со слегка открытыми челюстями грейфера. При этом руду каждого эшелона составит один из горизонтальных слоев 5 формируемого штабеля. Руда следующего эшелона, по составу отличающаяся от предшествующей, будет уложена выше таким же тонким горизонтальным слоем. Штабель формируют до определенной высоты. Иной порядок соблюдается при заборе руды из сформированного штабеля для загрузки ее в доменные печи. Забор руды осуществляется вразрез штабеля с таким расчетом, чтобы грейфер захватывал одновременно как можно больше слоев, усредняя тем самым состав отгружаемой со склада руды (см. рис. 29).

Принципы укладки руды в штабель горизонтальными слоями и забора ее из штабеля поперек слоев составляют основу любой схемы усреднения на рудных дворах. Степень усреднения возрастает с увеличением размеров штабелей руды. Для складов с рудными грейферными кранами степень усреднения составляет в среднем 1,8—2,2.

За рубежом для усреднения руды часто используют открытые рудные дворы без мостовых кранов. Формирование штабелей и забор руды из них осуществляют машинами напольного типа. Склад системы Робинса показан на рис. 30, а. Поступающая наусреднение руда укладчиком 3 рассыпается в два формируемых штабеля продольными слоями при движении машины вдоль оси штабелей. Число слоев в штабеле составляет 300—1000 при емкости штабеля 100 тыс. т. По окончании формирования штабелей (емкость склада до 800 тыс. т руды) руду берут поперек штабеля одновременно из всех горизонтальных слоев с помощью бороны 6 с зубьями (400—50.0 зубьев, наклон к горизонту 30—60°, ход рамы бороны 500—600 мм при числе качаний в минуту до 20). Борона осыпает руду на скребковый транспортер 7. Борона и скребковый транспортер смонтированы на погрузочной машине, передающей усредненную руду на ленточный конвейер 4, располагаемый обычно в траншее. На складах Робинса получают высокую степень усреднения руды, но эксплуатация их в суровых зимних условиях связана со значительными трудностями (поломка бороны погрузочной машины и т. д.). Крытый склад такого типа сооружен на Карагандинском металлургическом комбинате.

На агломерационных фабриках России получила распространение схема усреднительного склада с формированием штабелей сверху движущейся тележкой, сбрасывающей руду с ленточного конвейера, монтируемого в крытой галерее, опирающейся на мачтовые опоры (рис. 30, б). Руду из штабеля забирают с помощью экскаваторов поперек продольных слоев. Использование такой системы также позволяет добиваться высоких степеней усреднения.


2.2 Агломерация железных руд и концентратов

2.2.1 Общие вопросы

Окускование пылеватых железных руд и тонких концентратов перед доменной плавкой позволяет существенно улучшить технико-экономические показатели работы доменных печей, увеличить их производительность. Значительные капитальные затраты на строительство фабрик окускования рудного сырья и расходы на их эксплуатацию сравнительно быстро компенсируются экономией кокса и ростом выплавки чугуна на предварительно окускованном сырье. В настоящее время промышленностью используются два метода окускования: агломерация руд и концентратов и производство окатышей из концентратов.

Процесс агломерации *, изобретенный в 1887 г. англичанами Ф. Геберлейном и Т. Хантингтоном, первоначально использовался в цветной металлургии для обжига и окускования сульфидных руд, сера которых служила топливом для процесса спекания.

Позднее немецкие инженеры В. Джоб (1902 г.) и С. Завельсберг (1905 f.) применили этот метод к пиритным огаркам, пылеватым железным рудам и колошниковой пыли. Содержание серы в железных рудах обычно невелико. Поэтому рудная пыль предарительно смешивалась с 6—7 % (по массе) коксовой мелочи. Тепла, выделяющегося при горении коксовой мелочи, было достаточно для плавления шихты (1300—1500 °С).

Рис. 31. Схематический разрез чашевой агломерационной установки в различные моменты после начала спекания:

а — Конец зажигания шихты пламенем газовой горелки (в верхней зоне загорелась коксовая мелочь; под зоной горения зона подогрева шихты); б — через 1—2 мин после окончания зажигания (горелка выключена и отведена в сторону; в чашу засасывается воздух; над зоной горения уже образовался слой готового агломерата); в — через 8 —10 мин после начала спекания (зона горения прошла уже больше половины пути до колосниковой решетки; слой готового агломерата с каждой минутой растет); a — перед окончанием процесса (зона горения в крайнем нижнем положении). Показано также распределение температур по высоте спекаемого слоя: / — зона горения твердого топлива; 2 — зона сушки и подогрева шихты; 3 — зона сырой шихты; 4 — постель; 5 — зона готового агломерата

Процесс спекания железной руды осуществляется первоначально в чашевых установках периодического действия. Продувка спекаемого слоя в чаше снизу вверх связана с рядом технологических неудобств, ограничивающих производительность установок. Главными из них являются высокая запыленность цехов и переход при напоре выше 5 кПа к режиму кипящего слоя. В 1906 г. А. Дуайт и Р. Ллойд предложили принцип вакуумной агломерации с просасыванием воздуха через спекаемый слой сверху вниз. При этом вакуум (до 20 кПа) под колосниковой решеткой создается с помощью отсасывающего вентилятора — эксгаустера. Ход процесса спекания руд и концентратов в чашевой установке, эксплуатируемой, как это принято сейчас, в вакуумном режиме, отражен на рис. 31. Первым на колосниковую решетку укладывают слой постели — агломерата крупностью 10—20 мм без топлива. Постель препятствует просыпанию шихты через зазоры между колосниками (до 6 мм), уменьшает вынос пыли. Кроме того, слой постели на конечной стадии процесса агломерации предохраняет колосниковую решетку от воздействия высоких температур, повышая ее стойкость и предотвращая приваривание пирога готового агломерата к колосниковой решетке.

В состав агломерационной шихты, кроме пылеватых руд и концентратов, входят также колошниковая пыль, известняк, известь, коксовая мелочь, антрацитовый штыб и возврат — мелкий (<5 мм) недостаточно спеченный агломерат, направляемый на повторное спекание (рис. 32).

После тщательного смешения, увлажнения и окомкования шихта укладывается в аглочашу поверх постели, после чего включают эксгаустер и, подводя к поверхности спекаемого слоя газовую горелку, проводят зажигание шихты пламенем газа (1200—1300 °С). Под действием вакуума пламя втягивается в спекаемый слой шихты, состоящей из мелких частиц и комков, поверхность которых чрезвычайно велика. Например, как показывает расчет, при агломерации шихты крупностью кусков около 1 мм суммарная поверхность комков шихты в слое толщиной всего в 10 мм на площади спекания в 1 м2 близка к 30 м2. Огромная поверхность теплообмена и значительная кажущаяся теплоемкость холодной и влажной агломерационной шихты обусловливают высокую интенсивность теплообмена между шихтой и газом. Последний, двигаясь в шихте на пути 20—30 мм, охлаждается до 800—850 °С, т. е. до температуры ниже температур воспламенения коксовой мелочи в продуктах сгорания, содержащих 5—10 % О2.

Таким образом, только в этой узкой по высоте зоне (зоне горения твердого топлива) частицы коксовой мелочи нагреты до температуры воспламенения и имеют возможность гореть. Частицы топлива, располагающиеся в шихте ниже изотермы 800—850 °С, не горят, так как еще не нагреты до температуры воспламенения и омываются поступающими сверху продуктами сгорания коксовой мелочи, содержащими всего 3—4 % О2, а для устойчивого горения коксовой мелочи в газовой фазе должно содержаться не менее 5—6 % О2. Для зажигания коксовой мелочи достаточно 45—60 с, и зажигательную горелку отводят в сторону.

В дальнейшем все необходимое для процесса агломерации тепло выделяется при горении частиц коксовой мелочи в спекаемом слое. Под зоной горения, ниже изотермы 800—850 °С, располагается зона подогрева и сушки шихты (см. рис. 31), куда сверху поступают продукты сгорания. Здесь частицы твердого топлива постепенно нагреваются и воспламеняются, если в продуктах сгорания содержится достаточное для горения количество кислорода, что равносильно перемещению фронта горения вниз. Поскольку к этому моменту располагавшиеся выше частицы коксовой мелочи выгорают, то зона горения твердого топлива медленно движется к колосниковой решетке, несколько увеличивая свою толщину (см. рис. 31) и имея перед собой зоны подогрева и сушки шихты. Ниже располагаются зоны сырой шихты и постели. Температура в зоне горения твердого топлива высокая (1200— 1500 °С) и достаточная для плавления вещества шихты. После перемещения зоны горения вниз начинается кристаллизация расплава с образованием агломерата. Готовый агломерат, таким образом, есть продукт кристаллизации железистого расплава. По мере движения зоны горения твердого топлива толщина слоя готового агломерата непрерывно увеличивается и к концу процесса агломерат занимает весь объем чаши (см. рис. 31). Вертикальной скоростью спекания (v, мм/мин) называют скорость движения зоны высоких температур.

На аглофабриках страны в зависимости от газопроницаемости шихты вертикальная скорость спекания колеблется в пределах 20—30 мм/мин (табл. 4). Продолжительность агломерации составляет соответственно 8—12 мин.

2.2.2 Конвейерные агломерационные машины

Чашевые агломерационные установки периодического действия характеризуются относительно низкой производительностью, так как почти половина рабочего времени при их эксплуатации уходит на загрузку чаш шихтой, зажигание и выгрузку готового агломерата. С изобретением в 1906 г. непрерывно действующей ленточной агломерационной машины строительство крупных чаше-вых агломерационных установок было сокращено и в настоящее время во всем мире не более 3 % агломерата изготовляется на установках этого типа.

Первая ленточная агломерационная машина, конструкция которой была предложена в 1906 г. американцами А. Дуайтом и Р. Ллойдом, вошла в эксплуатацию в 1911 г. в г. Бёдсборо (США, шт. Пенсильвания). Машины этого типа получили широкое распространение во многих странах. В настоящее время в мире работает более 1000 аглолент суммарной производительностью до 450 млн. т агломерата в год. Советский Союз занимает первое место в мире по производству агломерата (151,4 млн. т в 1984 г.).

Ход процесса спекания на конвейерных машинах показан на рис. 33.

Рис. 33. Схема, иллюстрирующая ход процесса спекания на агломерационной машине ленточного типа:

1 — спекательные тележки-паллеты; 2 — укладчик постели; 3 — челноковый питатель ленты шихтой; 4 — газовый зажигательный горн; 5 — постель; 6 — зона сырой шихты; 7 — зона сушки и подогрева шихты; 8 — зона горения твердого топлива; 9 — зона готового агломерата; 10 — разгрузочный конец машины; // — вакуум-камеры; 12 — ведущая звездочка привода ленты; 13 — сборный газопровод

Ленточная агломерационная машина представляет собой замкнутую цепь движущихся спекательных тележек-паллет, перемещающихся по рельсам верхней горизонтальной рабочей ветви машины под действием звездочек 12 привода, а по рельсам нижней наклонной (2—3°) холостой ветви машины в перевернутом положении под действием горизонтальной составляющей собственного веса. Захват паллет с холостой ветви и транспортировка их на верхнюю рабочую ветвь машины также осуществляются с помощью звездочек привода. На стальной раме каждой паллеты монтируется три ряда колосников. Таким образом, паллета представляет собой движущуюся колосниковую решетку. Во время движения по рабочей ветви паллеты проходят над вакуум-камерами //, соединенными через сборный газопровод 13 с эксгаустером. Специальное уплотнение препятствует прососу воздуха в вакуум-камеры через стык с движущимися паллетами. Спекательные тележки движутся по рабочей ветви машины одна за другой без разрывов или зазоров. Просос воздуха между тележками в вакуум-камеры исключается.

Рис. 34. Агломерационная машина конвейерного типа с площадью всасывания 75 м2:

1 — питатели постели и шихты; 2 — привод машины; 3 — зажигательный горн; 4 — спекательные тележки-паллеты; 5 — вакуум-камеры; 6 — клапаны для регулирования вакуума; 7 — разгрузочный конец машины

Таким образом, главная масса воздуха должна при движении паллет над вакуум-камерами проходить через слой шихты, уложенный на рабочей ветви машины. Укладка постели и шихты на движущиеся паллеты производится специальными питателями 2, 3. Зажигание шихты осуществляют с помощью стационарного газового горна 4. Время пребывания паллеты под горном составляет около 1 мин. Теплота зажигания, рассчитанная на 1 м2 поверхности спекаемого слоя, составляет 42—50,5 МДж/мин. С момента начала зажигания шихты паллета находится над вакуум-камерами, в которых поддерживается разрежение до 20 кПа. Под зажигательным горном зона горения твердого топлива находится в крайнем верхнем положении. По мере движения паллет зона горения опускается вниз по направлению к колосниковой решетке, проходя весь спекаемый слой за 10—12 мин (в зависимости от высоты слоя и вертикальной скорости спекания). В тот момент, когда зона горения достигает слоя постели, паллета входит в закругление разгрузочной части ленты, образуемое ходовым рельсом и контррельсом, опрокидывается и пирог готового агломерата сбрасывается с паллеты. Сбрасывание сопровождается легким ударом, позволяющим очистить колосниковую решетку от заклинившихся в ней кусочков агломерата, а также сбросить приварившиеся к металлу колосников глыбы агломерата. С этой целью непосредственно за вакуум-камерами создается разрыв непрерывной цепи тележек, что позволяет осуществить удар очередной разгружающейся паллеты о группы пустых перевернутых тележек. Существует, однако, и другая конструкция разгрузочной (хвостовой) части машины. В ФРГ и США в ряде случаев стараются предохранить паллеты от ударов, повышая тем самым длительность их службы. Для этого поворот паллет осуществляется в разгрузочной части машины с помощью тормозных звездочек. В этом случае для обеспечения нормального схода пирога агломерата с паллеты необходимым специальные меры — плотный слой постели, автоматические приборы для определения степени законченности процесса спекания. Общий вид агломерационной ленты с площадью спекания 75 м2 показан на рис. 34.

Современная агломерационная фабрика представляет собой сложный комплекс сооружений, механизмов и машин, обеспечивающих подготовку руд и концентратов к спеканию, собственно агломерацию и обработку готового спека. Рассмотрим схему устройства агломерационной фабрики (рис. 41) несколько подробнее. Бункера 3 для компонентов шихты заполняются сверху через решетки 2 реверсивным ленточным конвейером 1. Бункер возврата заполняется конвейером 28. Дозировка компонентов шихты на сборный конвейер шихты 5 ведется с помощью весовых ленточных дозаторов 4. Дозатор представляет собой короткий ленточный конвейер, установленный под горловиной бункера. Скорость движения конвейера определяет массу выдаваемого на сборный конвейер компонента шихты. Эта скорость может регулироваться с центрального пульта управления шихтовым отделением, так как масса рамы и конвейера каждого дозатора и масса лежащей на конвейере руды фиксируются специальной весоизмерительной системой, смонтированной на месдозах, обеспечивающих точность взвешивания руды до +2 %. Смешивание слегка увлажненной шихты осуществляется во вращающемся барабанном смесителе 6, затем шихта по конвейеру 7 направляется к барабану-окомкователю 8. Смешанная и окомкованная шихта из бункера 9 укладывается питателем 30 на агломерационную ленту 11.

Предварительно питателем 29 на колосниковую решетку укладывается постель, поданная к ленте конвейером 26. Паллеты с шихтой проходят над вакуумом-камерами 12. Над головной частью ленты установлен зажигательный горн 10. Отходящие газы по сборному газопроводу 13 подводятся к пылеуловителям 14. Для очистки отходящих газов от пыли в большинстве случаев используются батареи мультициклонов, а иногда и электроочистки. Запыленность отходящих газов (10—12 г/м3) удается снизить до 0,15 г/м3. Это решает проблему защиты окружающей среды от выбросов пыли и резко повышает стойкость лопаток ротора эксгаустера 15. Между эксгаустером и дымовой трубой 17 устанавливают обычно главный шибер 16, с помощью которого может быть отрегулирован режим работы эксгаустера. Регулировка вакуума на каждой вакуум-камере может быть проведена с помощью специальных дроссельных клапанов (на рис. 41 не показаны; см. рис. 36, 37).

Готовый пирог агломерата падает с паллеты в валковую дробилку 20, после чего на грохотах 21 от дробленого продукта отделяют горячий возврат. Годный агломерат охлаждается в охладителе 22 и далее конвейером 23 направляется на грохоты 24 холодного агломерата. После отделения постели на грохоте 24 годный агломерат конвейером 25 транспортируется в доменный цех, а возврат конвейерами 27 и 28 — в бункер возврата. К горячему возврату с грохота 21 и холодному возврату с грохота 31 добавляют пыль и шламы газоочистки, а также просыпь (конвейеры 18, 19).

Охлаждение агломерата осуществляется в охладителях различных конструкций. В линейных охладителях (рис. 42) агломерат крупностью 5—200 мм укладывается на секционный пластинчатый конвейер. Холодный воздух просасывается через агломерат снизу вверх с помощью осевых вентиляторов.

В круглых секционных охладителях (рис. 43) агломерат загружается сверху в специальные камеры-секции, смонтированные на вращающейся раме. Изнутри через жалюзийные решетки через агломерат вентилятором продувается воздух. Каждая секция охладителя снабжена снизу люком, который открывается автоматически при выгрузке холодного агломерата из секции.

Время пребывания агломерата на охладителе обычно составляет 40—60 мин при расходе воздуха на 1 т агломерата 5000— 6000 м3. При этом агломерат охлаждается до 100 °С, что позволяет затем транспортировать его в доменный цех резиновыми конвейерами.

Насыпная масса агломерационной шихты колеблется от 1,7 до 2,2 т/м3. Насыпная масса несколько ниже для сидеритовых, бурожелезняковых и сильно офлюсованных шихт.

Вертикальная скорость спекания зависит от газопроницаемости шихты, величина разрежения и других факторов меняется в пределах от 0,015 до 0,33 м/мин.

Выход годного агломерата из шихты обычно не превышает 70—80 %.

2.2.3 Реакции между твердыми фазами

Испарение гигроскопической влаги шихты при агломерации происходит в зоне сушки и подогрева шихты толщиной до 30 мм со скоростью 30—35 г/(м2-с). Эта величина, отнесенная к 1 м2 поверхности комков шихты, во много раз превышает интенсивность парообразования в паровых котлах, что объясняется тесным контактом отходящих газов с подсушиваемым материалом. Установлено, что практически при любой вертикальной скорости спекания сушка шихты успеет завершиться под зоной горения твердого топлива. Это относится и к случаям спекания под давлением с максимальными скоростями; гигроскопическая влага никогда не попадает в зону горения и ее можно не учитывать в тепловом балансе.

Гидроксиды железа (Fe2O3-nH2O), содержащиеся в большом количестве в бурожелезняковых агломерационных шихтах, начинают диссоциировать в зоне подогрева шихты (120—150 °С). Поскольку этот процесс связан с большой затратой тепла (~4200 кДж/кг Н2ОГИдР), подогрев частиц бурого железняка идет медленно, дегидратация завершается лишь при максимальных температурах. Портландит Са (ОН)2 начинает диссоциировать от 450 °С. Этот процесс сопровождается разупрочнением рудных комков в зоне подогрева и сушки и ухудшением газопроницаемости спекаемого слоя.

При агломерации сидеритовых (FeCO3) и родохрозитовых (МпСО3) руд реакции диссоциации карбонатов железа и марганца также в значительной мере завершаются в зоне максимальных температур (основными твердыми продуктами диссоциации являются в данном случае соответственно Fe3O4 и Мп3О4). При агломерации, например, болгарских родохрозитовых руд до 60 % всего МпСО3 шихты входит в зону горения твердого топлива, где на диссоциацию карбонатов затрачивается большое количество тепла.

Ввод известняка (СаСО3) и доломитизированного известняка (Са, Mg) CO3 в агломерационную шихту позволяет получать офлюсованный агломерат. Вывод известняка из доменной шихты приводит к экономии значительного количества тепла, затрачиваемого ранее на диссоциацию СаСО3 и MgCO8; и к соответствующей экономии кокса. При агломерации на эти реакции затрачивается столько же тепла, но оно выделяется в спекаемом слоем при горении гораздо более дешевого, чем кокс, суррогатного топлива (коксовая мелочь, антрацитовый штыб, тощий уголь); в этом заключается экономический эффект от применения офлюсованного агломерата.

Применение офлюсованного агломерата позволяет улучшить шлакообразование, а также уменьшить содержание диоксида углерода в печных газах, т. е. повысить их восстановительную способность и улучшить шлакообразование.

Диссоциация известняка происходит в верхней части зоны подогрева шихты, но главным образом в зоне горения твердого топлива. В среднем, как показывают расчеты, продолжительность этого процесса при агломерации не превышает 2 мин, что заставляет предъявлять жесткие требования к крупности известняка. В известняке не должно содержаться частиц >3 мм, а в оптимальном случае он должен быть мельче 2 мм. Отклонения от этих норм неизбежно приводят к ухудшению качества агломерата, а котором в этом случае содержатся многочисленные белые включения известняка и не усвоенной расплавом извести, являющиеся затем при транспортировке и перегрузках продукта центрами разрушения его кусков. Разложение известняка в зоне горения твердого топлива снижает здесь температуру в среднем на 150—200 °С. Причины этого явления заключаются в потреблении большого количества тепла не только на диссоциацию карбонатов, но и на образование легкоплавкого расплава при пониженных в сравнении со спеканием неофлюсованных шихт температурах.

Остановимся подробнее на окислительно-восстановительных процессах при агломерации, происходящих сначала с участием твердых и газообразных фаз в зоне нагрева шихты, а затем в твердой, жидкой и газообразной фазах в зоне максимальных температур.

На рис. 50 показана мозаичная структура зоны горения, характерная особенность которой состоит в том, что из-за относительно низкого расхода коксовой мелочи на процесс [5—7 % (по массе)] далеко не все элементарные объемы шихты содержат горящие топливные частицы. Поскольку толщина зоны горения редко превышает 20—25 мм, создаются условия, при которых часть просасываемого через нее воздуха вообще не встречает на своем пути частиц коксовой мелочи (например, струи воздуха 2, 5, 7 рис. 50). Таким образом, в то время как вокруг горящих частиц топлива ощущается нехватка кислорода, преобладают высокие температуры и восстановительная атмосфера, а также имеется прямой контакт топлива с рудными частицами; в соседних объемах, где топливо отсутствует, просасывается нагретый выше зоны горения воздух, т. е. имеется окислительная атмосфера. В связи с этим отходящие газы агломерационных установок содержат 3—5 % О2. Соотношение чисел объемов первого и второго рода в зоне горения зависит от расхода коксовой мелочи на процесс спекания.

Интересной особенностью реакций в твердой фазе является тот факт, что независимо от массы вступающих в реакцию веществ при нагреве смеси реагентов первым продуктом реакции во всех случаях оказывается вещество с наиболее простой кристаллической решеткой или с решеткой, легко сопрягающейся с кристаллическими решетками реагентов. Так, в смесях извести и кремнезема, взятых в соотношениях 3:1,1:1,1:3 (по массе), в течение первых часов химического взаимодействия продуктом реакции является только Ca2Si04. Лишь через 4—8 ч появляются Ca3Si05 (в первой смеси) и CaSiO3 (во второй и третьей смесях). Реакции образования Ca2Si04 и Mg2Si04 (первый продукт реакции между MgO и SiO2) активно идут с 680—690 °С. Как установлено в МИСиС в 1981 г., на природу первого продукта твердофазных реакций решающее влияние оказывает температура реагентов. Так, нагретый до 1500 °С SiO2 с холодной известью СаО дает CaSiO3, в то время как холодный SiO2 с нагретым до 1500 °С СаО образует Ca2Si04. Аналогично протекают и другие реакции между твердыми фазами:

MgO (1500 °С) + SiO2 (<500 °С) = Mg2SiO4;

SiO2 (1500 °С) + MgO (<500 °С) =. MgSiO3;

FeO (1500 °С) + SiO2 (<500 °С) =Fe2Si04;

SiO2 (1500 °C) + FeO (<500 °C) = FeSiO3;

CaO (1500 °C) + Fe2O3 (<500 °C) =. 2CaO*Fe2O3;

Fe2O3 (1300°C) + CaO (<500 °C) = CaO*Fe2O3.

Открытие этого эффекта позволило впервые управлять природой первого продукта твердофазных реакций. Обычно в ходе агломерации температуры реагентов в шихте в зоне горения твердого топлива и под ней одинаковы, но при вводе высоконагретого возврата в холодную шихту следует учитывать различие в температуре реагентов. Как установлено экспериментально, с 990 °С в агломерационной шихте интенсивно образуется фаялит: 2FeO + + SiO2 = Fe2Si04; 2Fe3O4 + 3SiO2 + 2CO = 2Fe2Si04 + 2CO2. Гематит не реагирует с кремнеземом. Таким образом, образование фаялита при спекании гематитовой шихты может происходить только после восстановления гематита до магнетита или вюстита. Этому процессу способствуют, следовательно, восстановительная атмосфера, нормальный и повышенный расходы коксовой мелочи. При спекании офлюсованной шихты в твердой фазе преимущественное развитие получает процесс образования ферритов кальция (рис. 53). Поскольку химическое сродство извести к кремнезему почти в два раза выше, чем к гематиту Fe2O3, число контактов частиц в первом случае во много раз выше, чем во втором. В результате силикаты кальция в твердой фазе появляются в значительно меньших количествах по сравнению с ферритами кальция. Ферриты кальция появляются при наиболее низких температурах (400—500 °С) еще в зоне подогрева шихты. Установлено, что скорость образования ферритов кальция в твердой фазе чрезвычайно большая. При 1200 °С в смеси порошков извести и гематита 74 % всей извести усваивалось в феррит кальция за 1 мин. Следовательно, при любой основности из-за большого числа контактов CaO—Fe2O3, низкой температуры начала реакции и высокой скорости ее протекания в твердой фазе образуются преимущественно ферриты кальция. В связи с тем что магнетит не реагирует с известь, образованию ферритов при спекании магнетитовых офлюсованных шихт способствуют низкий расход топлива, обилие объемов с окислительной атмосферой, позволяющие частично окислить магнетит до гематита. Реакции в твердой фазе позволяют получить в зоне подогрева и в зоне горения твердого топлива новые легкоплавкие вещества, плавление которых является необходимым условием для получения достаточного количества расплава в зоне горения.

2.2.4 Плавление шихты, кристаллизация расплава и образование конечной микроструктуры агломерата

Процессы размягчения и плавления происходят только в зоне горения твердого топлива, так как лишь здесь температуры достаточны для перегрева веществ выше поверхности солидуса (размягчение) и ликвидуса (плавление) по соответствующим диаграммам состояния. Как уже указывалось, шихта в большинстве случаев не содержит легкоплавких компонентов. Однако после начала реакций между твердыми фазами образуются новые соединения (рис. 54) с пониженной температурой плавления. Первые капли силикатного и ферритного расплавов начинают растворять в себе всю массу шихты в зоне горения твердого топлива, чему способствуют неограниченная их растворимость в расплаве выше поверхности ликвидуса, с одной стороны, и быстрое повышение температур, с другой. Исследование кинетики смачивания и растворения компонентов агломерационной шихты в расплавах, проведенное Г. Г. Ефименко, Д. А. Ковалевым, А. И. Каракашем, С. В. Базилевичем, показало, что известь и магнезия хорошо смачиваются и энергично растворяются в расплавах силикатов железа; гематит и кварц — в расплавленных ферритах кальция. Углы смачивания Fe3O4, Fe2O3, CaO, MgO, SiO2, A12O3 расплавами на основе CaFeSiO4 и CaFe2O4 при 1300—1400 °C не превышают соответственно 30 и 60°. Таким образом, все вещество шихты оказывается в расплавленном состоянии и готовый агломерат образуется при кристаллизации этого расплава. При плавлении степень диссоциации компонентов шихты и вновь образовавшихся соединений различна. Максимальную устойчивость обнаруживают силикаты кальция, особенно Ca2Si04. В большей степени диссоциирует фаялит Fe2Si04.

Рис. 54. Общая схема минералообразования при спекании офлюсованного агломерата
 из смеси гематитовой аглоруды и магнетитового концентрата

При спекании руд и концентратов, содержащих, кроме Fe2O3, Fe3O4, SiO2, некоторое количество А12О3, в структуре агломерата отмечаются алюмоферриты кальция (4CaO*Al2O3*Fe2O9; CaO*Al2О3*2Fe2O3).

2.2.5 Удаление вредных примесей из шихты при спекании руд и концентратов

В ходе агломерации происходит интенсивное выгорание сульфидной серы шихты. Пирит FeS2 и пирротин FeS начинают окисляться с 250—280 °С по реакциям: 4FeS2 + 11О2 = 2Fe2O3 + 8SO2; 4FeS + 7O2 = 2Fe2O3 + 4SO2. Выше 1383 °C в воздушной атмосфере гематит диссоциирует с образованием магнетита, который и является в этом случае единственным твердым продуктом реакции: 3FeS2 + 8О2 = Fe3O4 + 6SO2; 3FeS + 5О2 = Fe3O4 + 3SO2

Определенную роль играет и прямое взаимодействие оксидов железа шихты и сульфидов: 16Fe2O3 + FeS2 = HFe3O4 + 2SO2 (>500°C); 10Fe2O3 + FeS = 7Fe3O4 + SO2 (>1100°C).

В присутствии катализаторов (Fe2O3) до 40 % SO2 окисляется до SO3. Некоторая часть органической серы коксовой мелочи переходит в газовую фазу и присутствует в газовой фазе в виде паров комплексов S2 (500—600 °С); S6 и S8 (до 500 °С). В отходящих газах установлено также наличие H2S и COS. В зоне горения твердого топлива сернистые соединения захватываются из газовой фазы железистым силикатным расплавом и растворяются в нем в виде CaS. Кроме того, при температурах до 900—1000 °С известь, известняк и ферриты кальция поглощают SO2 из газа по схеме: СаО + SO2 + 0,5Н2О = CaSO3*0,5H2O (сульфит кальция); CaSO3*0,5H2O = CaSO3 + 0,5Н2О (>150 °С); CaSO3 + 0,5О2 = CaSO4 (ангидрит).

Таким образом, высокая основность шихты ухудшает условия ее десульфурации. В равных условиях степень десульфурации шихты повышается с уменьшением крупности ее частиц. Однако чрезмерное переизмельчение может ухудшить газопроницаемость слоя и замедлить приток воздуха к частицам сульфидов, что снизит степень десульфурации. Как видно из приведенных выше реакций, избыток кислорода необходим для выгорания сульфидов шихты. Другими словами, эффективное выгорание сульфидной серы возможно лишь при окислительном режиме агломерации, т. е. при низких расходах коксовой мелочи, если они обеспечивают достаточно высокие температуры в спекаемом слое.

При агломерации магнетитового концентрата наилучшая десульфурация достигается при 3,5—4,5 % твердого топлива в шихте. Степень удаления сульфидной серы может достигать при агломерации 95—99 %. Поскольку при окислении сульфидов выделяется значительное количество тепла, 1 кг пирита в шихте по теплотворной способности заменяет 0,3 кг коксовой мелочи среднего качества. Сульфатная сера гипса (CaSO4*2H2O), барита (BaSO4) удаляется из шихты при агломерации всего на 60—70 %, так как диссоциация сульфатов требует длительного воздействия высоких температур (>1000 °С) на вещество шихты. Удалению сульфатной серы способствуют, следовательно, повышенные расходы топлива на спекание.

Удаление мышьяка, цинка, свинца шихты при производстве офлюсованного агломерата почти не имеет места. Однако при вводе в шихту хлорирующих добавок, например 2—3 % СаС12 (по массе), эти элементы образуют летучие хлориды с низкими (700—1000 °С) температурами кипения. В этих условиях удается удалить из шихты до 90 % РЬ, до 65 % Zn, до 60 % As. Что касается фосфора, то при любых условиях спекания он целиком переходит из шихты в агломерат.

2.2.6 Качество агломерата

Высококачественный агломерат прочен, почти не разрушается при нагреве и восстановлении в доменной печи, характеризуется высокой восстановимостью, высокой температурой начала размягчения и коротким интервалом размягчения.

Прочность агломерата определяется строением его кусков (их текстурой) и минералогическим составом. Установлено, что кусок агломерата не является однородным и представляет собой систему блоков (сгустков вещества), разделенных крупными порами неправильной формы. Блоки сварены друг с другом по поверхности, и текстура куска в целом напоминает строение виноградной грозди. Периферийная зона блока состоит главным образом из кристаллов магнетита, между которыми располагаются небольшое (5—10 %) количество силикатной связки и стекла. Ближе к центру расположена промежуточная зона с повышенным (10—30 %) количеством связки. Наконец, в центре блока всегда имеется одно или несколько силикатных «озер», которые на 60—80 % состоит из Са-оливина. Здесь среди массы силикатов и стекла расположены дендриты магнетита, его скелетные кристаллы, эвтектики Са-оливин-магнетит, силикаты кальция. Остатки руды встречаются только в периферийной зоне блока, а остатки коксовой мелочи только в его центральной части. Пористость в пределах блока тонкая. Форма сечения пор близка к круглой. Абсолютные размеры блоков увеличиваются по мере укрупнения коксовой мелочи, используемой для спекания.

В 1962 г. Е. Ф. Вегманом была предложена технология термической обработки агломерата, т. е. кратковременного повторного нагрева пирога пламенем газовых горелок (1100—1150 °С), установленных над хвостовой частью агломерационной ленты. Термообработка позволяет снять внутренние напряжения в пироге агломерата, провести процесс раскристаллизации стекла с выделением из его массы мельчайших кристаллов и дендритов магнетита. Кроме того, в ходе термообработки дополнительно снижается содержание остаточной серы в агломерате и увеличивается пористость и восстановимость продукта.

Восстановимость агломерата, как это было показано в исследовании К. К. Шкодина, связана в основном с поверхностью пор, доступных газу-восстановителю. В небольшой степени на восстановимость влияет и минералогический состав агломерата. В частности, восстановимость снижается, если в агломерате присутствуют трудновосстановимые фазы: фаялит Fe2Si04, Са-оливин, браун-миллерит 4CaO-Al2O3-Fe2O3 и стекло. Восстановимость офлюсованного агломерата меняется с увеличением основности по экстремальной зависимости. Максимум восстановимости агломерата относится к СаО : SiO2 = 1,4-1,5. Как показал опыт, восстановимость офлюсованного агломерата в настоящее время достаточно велика и соответствует современным требованиям доменной технологии. Температура начала размягчения в восстановительной атмосфере неофлюсованных агломератов, агломератов основностью 0,5—0,7 и 2—4 составляет соответственно 1100—1150, 1050—1100 и 1200—1250 °С. Минимальная температура начала размягчения соответствует максимальному количеству стекла в агломерате основностью 0,5—0,7, так как стекло, не имеющее фиксированной точки плавления, размягчается в широком интервале температур.

2.3 Производство железорудных окатышей

При агломерации тонкоизмельченных железорудных концентратов заметно уменьшается скорость процесса (из-за резкого снижения газопроницаемости шихты). Между тем в связи с постоянным увеличением доли руды, подвергаемой обогащению, в металлургический передел вовлекается все больше железорудного сырья, содержащего 80—90 % и более фракции <0,07, а в ряде случаев и <0,05 мм. Как правило, горно-обогатительные предприятия находятся на значительном расстоянии от металлургических центров. Возить влажный концентрат на металлургические заводы для последующей его агломерации невыгодно из-за издержек, связанных с перевозкой воды, и затруднительно из-за смерзания концентрата в зимнее время. Изготовление агломерата непосредственно на горно-обогатительных комбинатах нецелесообразно из-за его недостаточной механической прочности.

Удачным решением проблемы окускования тонких железорудных концентратов явилось производство железорудных окатышей, впервые предложенное в 1912 г. Андерсоном (Швеция) и в 1913 г. Браккелъсбергом (Германия). Производство железорудных окатышей в последнее время развивалось во многих странах мира высокими темпами и в настоящее время превысило 200 млн. т/год.

Схемы получения окатышей представляют собой комбинацию двух этапов: формирования окатышей путем окомкования влажной шихты в специальных аппаратах — окомкователях (производство сырых окатышей) и упрочнения гранул (обжиговым или безобжиговым способами) для придания окатышам прочности, необходимой для хранения, транспортировки к доменным цехам и проплавки их в печах.

2.3.1 Получение сырых окатышей

Сырые окатыши формируются при окатывании тонкодисперсного железорудного материала, увлажненного до определенной степени. Тонкоизмельченный железорудный порошок относится к гидрофильным дисперсным системам, характеризующимся интенсивным взаимодействием с водой. В такой системе стремление к уменьшению энергии реализуется путем снижения величины поверхностного натяжения на границе раздела фаз (при взаимодействии с водой) и укрупнения частиц (в результате их сцепления). Можно считать, что в целом дисперсная система железорудный материал —вода обладает определенным термодинамическим стремлением к окомкованию.

Другим важным фактором, влияющим на окомкование, является содержание влаги в шихте, которое определяют экспериментально.

Сырые окатыши должны обладать достаточной прочностью во избежание деформации и разрушения при их доставке к обжиговому агрегату, а также хорошей термостойкостью, т. е. способностью не разрушаться при обжиге. Для усиления этих свойств в шихту окатышей вводят связующие добавки (главным образом, бентонит, а также его смесь с водой, известь, хлористый кальций, железный купорос, гуминовые вещества).

Наибольшее распространение в производстве нашел бентонит, который в количестве 0,5—1,5 % вводят в шихту перед окомкованием. Бентонит — это глины, отличающиеся тонкой дисперсностью, ионообменной способностью, высокой степенью набухаемости при увлажнении, связностью, способностью постепенно выделять воду при нагреве. Бентонит в основном состоит из монтмориллонита (Al, Mg)2_3(OH)2-(Si4O10)-/iH2O и близких к нему по составу минералов. Часть катионов кристаллической решетки способна замещаться ионами Са2+ и Na1+. При увлажнении бентонит интенсивно поглощает воду, увеличиваясь в объеме в 15— 20 раз. Выбор бентонита обусловлен его способностью при увлажнении образовывать гели с чрезвычайно развитой удельной поверхностью (600—900 м2/г), которая примерно в 7 раз больше поверхности частиц других сортов глины. Бентонит увеличивает пористость сырых окатышей, что благоприятно сказывается на скорости удаления влаги во время сушки окатышей без снижения их прочности.

На современных фабриках окомкования сырые окатыши получают в окомкователях барабанных и тарельчатых (или чашевых) типов. Барабанный окомкователь (рис. 72) представляет собой цилиндрический барабан с гладкой внутренней поверхностью, который устанавливают под углом к горизонту (до 8—9°), и вращающийся на катках (частота вращения 7—11 мин"1). Зародыши окатышей при движении в барабане под действием силы тяжести и центробежной силы прижимаются к поверхности барабана. При этом на них накатывается слой концентрата мелкой фракции. Размеры промышленных барабанов достаточно велики: диаметр 3 м и более, длина до 14 м. Производительность таких агрегатов по сырым окатышам составляет более 90—100 т/ч. Барабанный окомкователь не позволяет получать окатыши мелкого класса, поэтому за барабаном устанавливают механический грохот, отсеивающий окатыши мелкой фракции (как правило, <6—8 мм). Иногда грохот совмещают с барабаном в его разгрузочной части. Мелкая фракция, или циркуляционная нагрузка, составляющая 150—400 % (по отношению к кондиционной фракции окатышей), специальным транспортером возвращается в загрузочное отверстие барабана. Использование циркуляционной нагрузки имеет большое значение для окомкования, так как в барабан подается большое количество зародышей (мелких окатышей), служащих центрами окомкования. Этим обеспечивается высокая стабильность работы барабанных окомкователей, что является их несомненным преимуществом.

Чашевые, или тарельчатые, окомкователи (рис. 73) представляют собой наклонно установленный (под углом 45—60е) диск с бортом. Исходная шихта, загружаемая во вращающуюся чашу заклинивается между бортом и днищем и поднимается на некоторую высоту. Скатываясь по наклонному днищу, зародыши накатывают на себя слой тонкого концентрата, превращаясь в частицы шарообразной формы. Учитывая, что частицы больших размера и массы при вращении тарели могут подниматься на большую высоту по борту, высота борта регулирует конечный размер сырых окатышей.

Диаметр тарели современных промышленных грануляторов составляет 5—7 м. Их удельная производительность зависит от свойств шихты и достигает 90 т/ч. Тарельчатые грануляторы, уступая барабанным в производительности и стабильности, обеспечивают получение более равномерных по крупности окатышей, допускают возможность регулирования и оперативной перестройки режима работ. Для тарельчатых окомкователей, как и для барабанных, важное значение имеют сохранение качественного слоя гарнисажа, правильный выбор угла наклона и скорости вращения чаши, влажности материала.

Механическая прочность сырых окатышей должна быть достаточной, чтобы не произошло их разрушение при транспортировке к обжиговым агрегатам. До настоящего времени нет обоснованной методики определения величины сил сцепления в сыром окатыше. Обычно статические и динамические нагрузки моделируют испытаниями соответственно на раздавливание и сбрасывание.

Испытание на раздавливание проводят путем сжатия окатыша с целью определения усилия, при котором окатыши деформируются или разрушаются. Минимальное сопротивление раздавливанию одного окатыша должно составлять 45—55 Н для окатышей диаметром 25 мм и 9 Н для окатышей диаметром 9,5 мм.

При испытании на сбрасывание важно правильно выбрать высоту. В соответствии с реальными уровнями высот транспортеров при перегрузке высота сбрасывания должна быть не менее 300 мм. В России сырые окатыши должны выдерживать без разрушения не менее 15 сбрасываний с высоты 300 мм. В США стандартная высота для испытаний на сбрасывание (5 раз) составляет 457 мм.

2.3.2 Высокотемпературное упрочнение окатышей

Агрегаты для обжига окатышей

В настоящее время более 99 % промышленных окатышей получают путем высокотемпературной обработки в обжиговых агрегатах. В производственных условиях используют три типа агрегатов: конвейерные машины, шахтные печи и комбинированные установки. В России для обжига в основном применяют конвейерные машины.

Шахтные печи особенно широко применяли в начальный период развития производства окатышей. Печи работают по принципу противотока: горячие газы поднимаются сквозь столб опускающихся окатышей. Для горения используют жидкое или газообразное топливо, сжигаемое в выносных топках, расположенных по обеим сторонам шахты печи. В верхней части печи происходят сушка, подогрев и обжиг окатышей, а в нижней — охлаждение окатышей холодным воздухом до 100—150 °С. Температура отходящих газов составляет 150—200 °С.

Процесс обжига в противотоке отличается совершенством теплообмена, обеспечивающего высокую степень усвоения тепла, поэтому для шахтных печей характерен низкий расход тепла.

Различие конструкций шахтных печей главным образом сводится к способу использования воздуха после охлаждения окатышей. На рис. 74 приведена конструкция шахтных печей (фабрики «Эри майнинг» в США, в Мальмбергете в Швеции и др.).

Производство окатышей в шахтных печах характеризуется низкими эксплуатационными затратами. Исключается необходимость сложных в изготовлении и обслуживании высокотемпературных дымососов. Однако максимальная годовая производительность печей этого типа не превышает 0,5 млн. т ввиду невозможности равномерного распределения газов в печах с большой площадью поперечного сечения. Кроме того, при производстве окатышей в шахтных печах предъявляются повышенные требования к свойствам сырых окатышей. В случае местного оплавления или разрушения материалов образуются настыли на стенках печи и нарушается движения газового потока в столбе материалов. Поэтому шахтные печи приспособлены прежде всего для производства неофлюсованных окатышей, когда допустим больший, чем в случае офлюсованных, интервал колебаний температур без размягчения и оплавления окатышей.

Конвейерная машина по устройству аналогична агломерационным машинам ленточного типа, но приспособлена для работы при более высоких температурах. Отходящие газы отсасываются не одним эксгаустером, как при агломерации, а несколькими. В соответствии с технологией процесса обжига для лучшего использования тепла машина разделена на технологические зоны, перекрытые сверху специальными секциями горна. Тепловой режим в каждой секции устанавливают, как правило, независимо от режима других секций. Газы из каждой зоны отсасываются отдельными дымососами. Обычно конвейерная машина состоит из следующих зон: сушки (одна или две секции), подогрева, обжига (от одной до трех секций), рекуперации и охлаждения.

Схема газопотоков, принятая в настоящее время для большинства конвейерных обжиговых машин, предусматривает реверс теплоносителя в зоне сушки, устройство двух зон охлаждения и прямой переток из первой зоны охлаждения в зоны подогрева, обжига и рекуперации (рис. 75). Нагретый воздух из колпака второй зоны охлаждения подается во вторую зону охлаждения для прососа его сверху вниз и по мере необходимости в горелки зон сушки, подогрева, обжига и рекуперации.

Механизм и кинетика упрочнения железорудных окатышей

При обжиге окатышей высокотемпературное спекание частиц в прочную гранулу может проходить в двух режимах: с отсутствием жидкой фазы (твердофазное спекание) и при наличии некоторого количества расплава (жидкофазное спекание). Температурная граница, разделяющая области твердофазного и жидкофазного спекания, зависит от окислительно-восстановительного потенциала газовой фазы, от количества и состава пустой породы. Для окисленных окатышей температурная граница колеблется в интервале 1150—1250 °С.

На первой стадии спекания упрочнение протекает с уменьшением суммарного объема пор, поэтому для малого времени процесса (до 15—20 мин) изменение объемной пористости является характеристическим параметром упрочнения окатышей. На заключительных стадиях спекания объем пор может не изменяться при исчезновении мелких и росте размера крупных пор (процесс коалес-ценции). Поверхность пор при этом продолжает снижаться. В режиме твердофазного спекания обычно упрочняются окатыши нижних слоев конвейерной машины, а также неофлюсованные окатыши из богатых концентратов с низким (менее 2—3 %) содержанием пустой породы. Твердофазное спекание оксидов железа начинает проявляться при 800—900 °С. При этом активно спекаются как гематит, так и магнетит.

Скорости твердофазного упрочнения сравнительно низки. Образование некоторого количества жидкости (жидко-фазное спекание) должно существенно интенсифицировать процесс упрочнения окатышей. Это положение выполняется при условии высокой жидкоподвижности расплава и хорошей смачиваемости им твердой составляющей. Особенно эффективно должны воздействовать на упрочнение первые порции расплава. Заполняя поры и промежутки между частицами шихты, расплав играет роль клея, скрепляющего частицы, и роль смазки, позволяющей частицам передвигаться относительно друг друга. Все это приводит к резкому увеличению межзеренных границ, а следовательно, и к быстрому росту прочности окатышей.

Таким образом, глубину обогащения железных руд для доменной плавки должны определять не только стоимостью обогащения и влиянием снижения выхода шлака в доменном процессе, но и изменением прочностных свойств окускованного сырья.

Важное значение имеет не только количество расплава (целесообразное его количество 12—20 %), но и его физико-химические свойства. Прежде всего имеются в виду вязкость и смачиваемость им оксидов. В застывшей связке содержится 16,5—18 % оксидов железа, 45—60 % кварца, 20—40 %, оксида кальция в зависимости от основности окатышей. Увеличение основности окатышей сопровождается увеличением основности связки, но до определенного предела (0,8—0,9). Начиная с основности окатышей 1,0 состав связки стабилизируется и в структуре окатышей появляется эвтектика из ферритов и силикатов кальция. Синтез искусственной связки позволил определить некоторые ее свойства в жидком состоянии. Так, выяснено, что в температурном интервале обжига окатышей (1250—1300 °С) связка обладает высокой вязкостью (70—180 П) и лишь при температуре обжига выше 1320 °С снижается до 50 П.

Поведение вредных примесей

В обычных условиях окислительного упрочняющего обжига большинство вредных примесей (кроме серы): фосфор, мышьяк, цинк и др. из окатышей не удаляется. При получении неофлюсованных окатышей из сернистых концентратов, в которых сера находится в виде сульфидов железа, степень ее удаления составляет 95— 99 %.

Окислительная атмосфера обжига обеспечивает высокую степень окисления серы, перевода ее в газовую фазу в виде SO2 и удаления из шихты. Однако в присутствии известняка степень десульфурации значительно снижается. Отмечено, что SO2 и газообразная сера могут поглощаться оксидами железа, кальция, магния, ферритами и силикатами кальция. Таким образом, задача удаления серы при обжиге окатышей связана с условиями образования и разложения сульфатов (главным образом, сульфата кальция).

Термодинамическим анализом найдено, что СаО в различном виде может поглощать SOa уже при 400—800 °С:

СаСО3 + SO, + 0,5О2 = CaSO4 + CO3;

СаО + SO2 + 0,5О2 = CaSO4;

CaO-Fe2O3 + SO2 + 0,5О2 = CaSO4 + Fe2O3;

Таким образом, при обжиге офлюсованных окатышей возможно образование некоторого количества сульфата кальция и конечная степень десульфурации зависит от разложения этого сульфата, который является устойчивым соединением. При 1360 °С за 20 мин разлагается лишь половина сульфата, причем при 1100—1300 °С в отсутствие оксидов железа, кремния и алюминия сульфат кальция не разлагается совсем.

На содержание серы в окатышах влияют температурный режим обжига и особенно скорость нагрева и конечная температура обжига. При медленном нагреве условия усвоения газообразной серы известняком улучшаются и к моменту достижения температуры обжига вся сера находится в виде сульфата кальция. Разложение сульфата кальция интенсифицируется с повышением температуры.

Удаление серы в большей степени зависит от основности окатышей. Для окатышей изменение основности (СаО + MgO): SiO2 от 0,51 до 1,56 привело к увеличению содержания серы с 0,02 до 0,063 %.

Замена известняка в окатышах доломитом или доломитизированным известняком приводит к значительному снижению содержания серы в окатышах, так как сульфат магния как менее прочное, чем сульфат кальция, соединение начинает разлагаться на 100— 150 °С раньше, обеспечивая более полное протекание процесса удаления серы.

Десульфурация зависит также и от других причин. Ее полноте способствуют большее время обжига, мелкий помол кусков известняка, уменьшение размеров окатышей и др. Кроме того, имеет значение состав газовой среды. По мере увеличения содержания кислорода в газе окисление сульфидов протекает интенсивнее. Разложение сульфатов, наоборот, при этом замедляется.

2.3.3 Получение окатышей безобжиговым путем

Основные эксплуатационные и капитальные затраты на производство окатышей связаны со стадией обжига, поэтому в различных странах ведут поиски метода упрочнения окатышей без их высокотемпературной обработки. В настоящее время опробованы два варианта безобжигового получения окатышей.

Автоклавный метод

В черной металлургии этот метод опробован в Воронежском государственном университете. Упрочнение происходит в результате образования связки цементационного типа, представляющей собой гель, состоящий из оксидов кальция, магния, кремния и частично железа. Связка образуется при взаимодействии извести, добавляемой к концентрату, с кремнеземом. Преобладающими минералами связки являются гидросиликаты кальция. Взаимодействие извести с кремнеземом происходит в результате 2—5 ч выдержки в автоклаве при 180—200 °С и давлении пара 1 — 1,5МПа. Необходимы тщательное перемешивание шихты, а также перевод извести в шихте непосредственно перед окомкованием в гидрооксид кальция (во избежание разрушения окатышей при паротепловой обработке). Для этого целесообразно силосование шихты в течение нескольких часов. Применение автоклавированных окатышей, видимо, более перспективно в сталеплавильном и ферросплавном производстве, так как окатыши обладают невысокой прочностью при восстановлении. Недостатками метода являются также невысокая производительность и периодичность процесса.

Производство окатышей на цементной связке

В качестве связки используют портландцементный клинкер. Упрочнение окатышей происходит в результате реакций гидратации основных клинкерных минералов — алита (Ca3Si05), пятикальциевого триалюмината (СаА1вО14), четырехкальциевого алюмо-феррита (Ca4Fe2Al2Ol0) и др., в результате которых в окатышах образуется связка сложного состава, подобная получаемой при автоклавной обработке.

Основным недостатком способа является большая суммарная продолжительность процесса упрочнения (21—28 сут). Нормальному течению процесса препятствует также слипание окатышей, что требует создания «буферного» слоя концентрата и усложнения схемы. Перспективы получения окатышей безобжиговым путем до настоящего времени не являются ясными ввиду отсутствия надежных промышленных технико-экономических данных их производства и проплавки.


2.3.4 Металлургические свойства окатышей

Прочность окатышей

Обожженные окатыши должны сохранять свою прочность от момента схода с обжиговой машины до загрузки в доменную печь.

Для окатышей важна не только нагрузка, при которой происходит их разрушение, но и крупность

получаемых кусков. В частности, в доменную печь нежелательно загружать куски <3—5 мм.

Прочность окатышей обычно оценивается двумя показателями: прочностью при испытании на раздавливание (Н/окатыш) и выходом мелкой фракции (0,5—0,6 мм) после испытания на истирание в барабане (гладком или с двумя—тремя полками). Первое испытание дает большой разброс значений (среднеквадратичное отклонение равно половине средней величины), поэтому для испытания следует отбирать не менее 40—50 образцов.

На прочностные свойства окатышей влияет ряд технологических факторов. Из них основным является температура обжига, которая в значительной степени интенсифицирует процесс спекания, благоприятно влияя на свойства расплава, образующегося при обжиге. Температурная зависимость прочности имеет экстремальный характер. При превышении температурного оптимума (не одинакового для различных окатышей) наблюдается некоторое снижение прочности. Причинами этого явления считают диссоциацию гематита с образованием неоднородной структуры окатышей, а также образование чрезмерного количества расплава.

Определенную роль в упрочнении играет и время пребывания окатышей при температуре обжига. Наиболее интенсивно упрочнение протекает в первые 5—20 мин. Затем этот процесс замедляется и возможно даже некоторое снижение прочности окатышей, что объясняется рекристаллизацией зерен оксидов железа, приводящей к уменьшению протяженности межзеренных границ.

На прочность окатышей влияет ход процесса окисления оксидов железа. Установлено, что при окислении оксидов железа скорость уплотнения магнетита снижается, свидетельствуя об уменьшении скорости спекания и упрочнения образцов. Таким образом, целесообразно разделить процессы окисления и спекания, проводя низкотемпературное окисление (при 900—1000 °С). Для этого необходимо поддерживать небольшой скорость подогрева окатышей (80—120 °С/мин).

Воздействие на прочностные свойства окатышей оказывает и скорость охлаждения. При высоких скоростях охлаждения (более 100—150 сС/мин) прочность окатышей снижается, что обусловлено развитием термических напряжений.

На прочность окатышей влияют количество и состав пустой породы, от которых зависят количество и свойства расплава, образующегося при обжиге окатышей. Влияние количества пустой породы на прочность неофлюсованных окатышей экстремальное, т. е. степень офлюсования окатышей должна значительнее влиять на прочность окатышей при малом количестве пустой породы, т. е. при обжиге окатышей из богатых железорудных концентратов. Таким образом, при выборе режима обжига следует иметь в виду взаимосвязь трех переменных: прочности окатышей, содержания железа в исходном концентрате и основности шихты.

На прочность окатышей влияет также размер частиц компонентов шихты: чем мельче частицы, тем быстрее спекаются зерна.

Прочность окатышей при восстановлении

При восстановлении прочность железорудных окатышей существенно снижается. Например, в доменных печах ММК проплавляли офлюсованные окатыши ССГОКа средней исходной прочностью 2 кН/окатыш. Прочность окатышей, извлеченных из верхней части шахты, составляла 470—850 Н/окатыш. На середине высоты шахты прочность снижается до 240—325 Н/окатыш. Резкое разупрочнение окатышей при восстановлении может привести к их разрушению в печи, образованию мелочи с уменьшением газопроницаемости столба шихты и увеличением выноса пыли из печи.

До настоящего времени нет единой методики определения прочности окатышей при их восстановлении. Наиболее простой метод сводится к определению раздавливающего усилия на восстановленный до определенной степени горячий или охлажденный окатыш и оценке выхода мелочи после разрушения.

Однако основным фактором, влияющим на поведение окатышей при восстановлении, является структура, определяющая скорость восстановления окатышей. Чем выше удельная поверхность и средний размер пор, тем более вероятно протекание восстановления во всем объеме окатыша и тем выше скорость восстановления, ниже прочность и выше разрушаемость окатышей.

Все мероприятия, обеспечивающие получение окатышей с более плотной структурой, приводят к росту горячей прочности окатышей. Наиболее эффективным является получение окатышей с некоторым количеством расплава. Следовательно, образование при обжиге жидкой фазы с нужными свойствами (низкая вязкость, хорошая смачиваемость и др.) благоприятно сказывается на холодной и горячей прочности окатышей.

Таким образом, требования к режиму обжига окатышей с точки зрения их прочности и восстановимости, как и в случае агломерации, не совпадают. Задачей технолога является определение для данных конкретных условий режима обжига, обеспечивающего получение высокопрочных окатышей при минимальном снижении их восстановимости.

Восстановимость

Восстановимость окатышей меняется в зависимости от их структуры и состава, что в свою очередь определяется режимом обжига. Наилучшей восстановимостью обладают окатыши, обожженные при 1000—1150 °С. В этих условиях упрочнение окатышей осуществляется исключительно по твердофазному механизму. Рудный минерал представлен в основном гематитом. Пористая неоплавленная структура окатыша с высокой удельной поверхностью пор определяет его высокую восстановимость. Однако прочность обожженных в этих условиях окатышей низкая, поэтому такой режим обжига на практике не осуществляют.

При обычной в производственных условиях температуре обжига (1200—1350 СС) на восстановимость окатышей основное влияние оказывает образование расплава, что сказывается на физической структуре гранул, а следовательно, и на восстановимости окатышей. Решающую роль на восстановимость окатышей оказывает удельная поверхность пор. Восстановимость окатышей определяется и их размером. При увеличении диаметра окатышей восстановимость их падает, причем особенно резко при диаметре более 16—18 мм.

2.3.5 Сравнение металлургических свойств агломерата и окатышей

Эффективность проплавки агломерата и окатышей зависит от их качества. Средние показатели качества агломерата (числитель) и окатышей (знаменатель) по фабрикам окускования России за 1985 г. приведены ниже:

Содержание железа, %                                   52,00/61,38

СаО : SiO2                                                                                                 1,28/0,39

Содержание мелочи «5 мм), %:

в скиповом агломерате                                   15,6/—

в окатышах при отгрузке                —/3,66

Удельная производительность, т/(м2-ч)                1,21/0,91

Расход условного топлива, кг/т                   —/33,9

Затраты на передел, руб/т                            3,02/5,16

Себестоимость, руб/т                                      18,96/18,67

Основным преимуществом окатышей является их прочность в холодном состоянии, позволяющая транспортировать окатыши на большие расстояния. Поэтому в окатышах, загружаемых в доменную печь, содержится меньше мелочи, чем в агломерате. Значительно выше в окатышах и содержание железа. Однако меньшая окисленность и большее количество связки в агломерате обеспечивают его более высокую прочность при восстановлении. Агломерат по сравнению с окатышами дает меньше мелочи при восстановлении в доменной печи. Таким образом, содержание мелочи в шахте печи при проплавке агломерата и окатышей выравнивается. Однако эффективность плавки на окатышах несколько снижается из-за того, что при их восстановлении образуется большее по сравнению с агломератом количество пылеватой фракции, затрудняющей процессы в шахте печи. Поэтому более высокое содержание в окатышах железа используется в печи менее эффективно, чем можно было ожидать. Повышение содержания железа в окатышах на 1 % приводит к росту производительности и снижению расхода кокса на 1—1,5 % вместо 1,5— 2,5 % при проплавке агломерата.

Восстановимость окатышей по сравнению с агломератом выше, а содержание серы при равной основности больше.

2.3.6 Производство металлизованных окатышей

Металлизованные материалы можно использовать следующим образом.

При обогащении бедных, комплексных и труднообогатимых руд. В этом случае целесообразно восстановить до металла и далее извлечь в концентрат (например, магнитной сепарацией) максимальную долю железа. Для этого процесса необходима максимально возможная степень металлизации.

Для применения металлизованных материалов в сталеплавильном производстве, исключая доменную плавку. Для этого процесса необходимы максимальная степень металлизации, а также использование чистых по вредным примесям и богатых (не более 5 % пустой породы) железорудных концентратов.

Для переплавки в доменной печи. Последнее направление представляется весьма перспективным, поскольку в данном случае могут быть использованы рядовые шихтсвые материалы, а эффективность использования металлизованных окатышей в доменной печи весьма высока. Согласно теоретическим расчетам и опытным данным при степени металлизации доменной шихты до 50—60 % каждые 10 % металлизации обеспечивают снижение расхода кокса на 4—6 % и прирост производительности на 5—7 %. При получении частично восстановленной шихты важна не общая степень восстановления, обычно оцениваемая отношением количества отнятого при восстановлении шихты кислорода к его первоначальному количеству, а степень металлизации — отношение металлического железа ко всему железу шихты. С этой точки зрения термин «металлизованная шихта» более предпочтителен, чем «частично восстановленная шихта».

В настоящее время существуют две возможности производства металлизованных окатышей:

металлизация обожженных окисленных окатышей;

совмещение упрочнения и восстановления в одном технологическом процессе.

Последнее направление представляется более экономичным и более перспективным, однако его технологическое воплощение связано с рядом трудностей.

Вместе с этой лекцией читают "1 Оглавление".

В качестве восстановителя применяют газ (чаще всего продукты конверсии природного газа), твердое топливо (коксовая мелочь, антрацит, буроугольный полукокс и др.) или их смесь.

Для получения металлизованных материалов применяют известные в промышленности агрегаты — конвейерную машину, шахтную печь и комбинированную установку. До настоящего времени нет достаточной ясности о преимуществах этих агрегатов, так как отсутствует практический опыт. Следует ожидать, что использование указанных конструкций связано с типом технологического процесса.

2.4 Процессы восстановления в доменной печи

Основными восстановителями в доменном процессе являются углерод, монооксид углерода и водород. Элементы, попадающие с шихтой в доменную печь, в зависимости от их превращений в условиях доменной плавки можно разделить на практически полностью восстанавливающиеся (Fe, Ni, Co, Pb, Си, Р, Zn и др.); частично восстанавливающиеся (Si, Mn, Cr, V, Ti и др.); не претерпевающие восстановления (Са, Mg, Al, Ba и др.).

Процесс восстановления железа из оксидов согласно принципу А. А. Байкова о последовательности превращений протекает ступенчато путем перехода от высших оксидов к низшим по схеме: Fe2O3 -> Fe3O4 -+ FeO -> Fe (выше 570 °C) или Fe2O3 - Fe3O4 -> -> Fe (ниже 570 °C). При этом в соответствии с диаграммой Fe—О в системе наряду с низшими оксидами и металлом возникает ряд твердых растворов.

В зависимости от вида газообразного продукта восстановления (в доменной печи) различают прямое и непрямое (косвенное) восстановление. В первом случае продуктом является СО, а во втором —СО2 или Н2О.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее