Популярные услуги

Строение атома

2021-03-09СтудИзба

Строение атома

Установлено, что существует тесная связь между положением химических элементов в таблице Менделеева и строением атомов этих элементов.

Количество протонов в ядре (р) атома данного элемента числено совпадает с порядковым номером элемента (z).

Количество нейтронов (n)  в ядре атома элемента равно разности между атомным весом (А) элемента (округленным до целого значения) и его порядковым номером в таблице Менделеева

n= A-z

Количество электронов в атоме данного элемента числено равно порядковому номеру элемента.

Так,  например,   золото имеет порядковый номер 79. Значит, в ядре его атома находится 79 протонов, а вокруг ядра движутся 79 электронов, что обеспечивает электронейтральность атома.  Атомный вес золота равен 196.9655, или округленно 197. Следовательно, в ядре атома золота содержится 197-79=118 нейтронов.

Электроны в атомах располагаются на определенных энергетических уровнях.

Рекомендуемые материалы

Задача 435: В задачах 428 – 443 определите энтропию 1 моль газа при указанном давлении p и постоянной температуре 298 K. Укажите, увеличивается или уменьшается энтропия вещества при изменении давления от стандартного к заданному. Значения энтропии пр
Задача 431:В задачах (428-443) определите энтропию 1 моль газа при давлении P и стандартной температуре. Укажите,
Задача 378:В задачах (370-394) определите стандартный тепловой эффект реакции при:а) изобарном её проведении -
Задача 530:В задачах (522-536) для данной гомогенной реакции А + В ⇔ С + D определите температуру, при которой
При гидролизе алита образуется гидросиликат кальция по реакции: 3CaO∙SiO2 + 3H2O = 2Ca(OH)2 + CaO∙SiO2∙H2O. Определите массу воды, вступившей в реакцию, при образовании 100 кг гидросиликата.
Задача 527:В задачах (522-536) для данной гомогенной реакции А + В ⇔ С + D определите температуру, при которой

Количество энергетических уровней электронов  в атоме данного элемента числено равно периоду таблицы Менделеева этого элемента.

Так, золото находится  в 6 периоде, следовательно, 79 электронов атома золота располагаются на 6 уровнях.

Максимальное число электронов, которое может располагаться в атоме на любом уровне, определяется его номером n  и равно 2n2.

Так, в атоме золота на первом (n=1, ближайшем к ядру) уровне может находиться не более 2 электронов, на втором (n=2) - не более 8 электронов, на третьем (n=3)- не более 18  электронов, на четвертом (n=4) -не более 32 электронов и т.д.  Электронное строение атома золота выглядит таким образом (79 электронов располагаются на 6 уровнях)

79Au 2,8,18,32,18,1

Для элементов, находящихся в главной подгруппе таблицы Менделеева, число электронов, вращающихся на внешнем (самом удаленном от ядра) уровне, числено равно номеру группы.  Номер группы данного элемента в таблице Менделеева характеризует максимально возможную валентность данного элемента в его соединениях с другими элементами. Следовательно, максимально возможная валентность элемента главной подгруппы определяется числом электронов на внешнем энергетическом уровне. Поэтому такие электроны называют валентными электронами.  Для элементов побочной подгруппы это правило не всегда соблюдается (например, для цинка 30Zn 2,8,18,2 оно соблюдается, а для титана 22Ti 2,8,10,2 -нет).

Опыт показал,  что движение электронов в атоме нельзя описать в рамках классической   ньютоновской механики, и к 1925-1926 году австрийским ученым Шредингером была разработана квантовая механика.  Согласно принципу неопределенности Гейзенберга, невозможно одновременно   точно определить местонахождение частицы и ее скорость, поэтому в квантовой механике говорят лишь о вероятности обнаружения электрона в той или иной области пространства. Поэтому под орбитой электрона в атоме (например, в атоме водорода)  не следует понимать какую-то траекторию его движения вокруг ядра, как в планетарной модели строения атома

Электрон в атоме как бы размазан в пространстве вокруг ядра с определенной электронной плотностью. Поэтому говорят, что при своем движении в атоме  электрон образует электронное облако. С учетом этого простейший атом водорода можно изобразить схемой

Согласно квантовой механике, состояние электронов в атоме (плотность электронного облака) полностью характеризуется волновой функцией Y, которая определяется набором из четырех квантовых чисел:

1. Главным квантовым числом -n, которое определяет дискретный (квантовый) набор разрешенных энергетических уровней энергии электронов.  Главное квантовое число может принимать целочисленные положительные значения 1.2.3, и т.д. до бесконечности, т.е. n=1,2,3,....,¥, если количество химических элементов бесконечно.  Для любого известного элемента таблицы Менделеева n  совпадает с номером периода этого элемента.

 Так, для всех элементов первого периода в атоме может быть только один энергетический уровень (n=1),  а для всех элементов 7 периода электроны располагаются на 7 энергетических уровнях (n=7).

2.  Орбитальным (или побочным) квантовым числом -l (эль), которое определяет величину орбитального момента количества движения электрона.  Для каждого значения n побочное квантовое число l может принимать целый набор значений от нуля до n-1: l=0, 1, 2,..., n-1

Так, например,

для n=1 может быть только одно значение l=0;

для n=2 побочное квантовое число может иметь уже два значения: l=0 и 1;

для одного только значения главного квантового числа n  побочное квантовое число l может принимать целый набор значений от 0 до n-1 включительно.

3. Магнитное квантовое число m определяет состояние электрона при наложении на атом внешнего магнитного поля.  Оно может принимать значения от -l до +l, включая нуль, т.е. m=0,±1,±2,....,±l.

4. Спиновое квантовое число-s. Оно характеризует собственный момент количества движения электрона.  Спиновое квантовое число может принимать всего два значения: s=+1/2, -1/2. 

Таким образом, состояние электрона в атоме (волновая функция -Y) характеризуется набором четырех квантовых чисел Y(n,l,m,s).  Согласно принципу запрета Паули, в любом атоме не может быть двух электронов, у которых все четыре квантовых  числа были бы одинаковыми.  Другими словами электроны в атоме неповторимы.

Состояние электрона, характеризующееся определенным значением главного квантового числа n, принято называть энергетическим уровнем электрона в атоме.  Если n=1, то говорят, что электрон находится на первом (ближайшем к ядру атома) энергетическом уровне.  При n=2 электроны образуют второй (более удаленный от ядра)  энергетический уровень и т.д.. Максимальное количество электронов N, которые могут находиться на энергетическом уровне n равно

N=2n2

Отсюда следует, что на первом энергетическом уровне могут располагаться не более 2 электронов,  на втором уровне - не более 8 электронов, на третьем энергетическом уровне не более 18 электронов, на четвертом уровне - не более 32 электронов и т.д. 

Волновая функция со значением орбитального квантового числа l=0 называется S-орбиталью, т.е.  S-орбиталь - это волновая функция  видаY(n,0,m,s). Для каждого значения n существует своя  единственная S-орбиталь. Чем выше значение n, тем выше значение энергии для соответствующей S-орбитали. Геометрически S-орбиталь представляет собой сферу

Волновая функция со значением орбитального квантового числа, равным единице (l=1) принято называть р-орбиталью, т.е. р-орбиталь - это волновая функция вида Y(n,1,m,s).

Для каждого значения n существует свои  три р-орбитали:

Y(n,1,-1,s), Y(n,1,0,s), Y(n,1,1,s),

 поскольку при l=1 магнитное квантовое число может принимать три значения m=

-1,0,1.

 Чем выше значение n, тем выше значение энергии для соответствующей p-орбитали. Геометрически p-орбиталь напоминает восьмерку, или гантель, ориентированную вокруг соответствующей оси

Аналогичным образом выглядят рY  и pZ- орбитали.

 Волновая функция со значением орбитального квантового числа, равным двум (l=2) принято называть d-орбиталью, т.е. d-орбиталь - это волновая функция вида Y(n,2,m,s).

Для каждого значения n существует свои  пять d-орбиталей:

Y(n,2,-2,s),Y(n,2,-1,s), Y(n,2,0,s), Y(n,2,1,s), Y(n,2,2,s),

поскольку при l=2 магнитное квантовое число может принимать пять значений m=-2,-1,0,1,2.  Чем выше значение n, тем выше значение энергии для соответствующей d-орбитали. Геометрически d-орбиталь напоминает 4-x лепестковый цветок.

Волновая функция со значением орбитального квантового числа, равным трем (l=3) принято называть f-орбиталью, т.е. f-орбиталь - это волновая функция вида Y(n,3,m,s).

Для каждого значения n существует свои  семь f-орбиталей:

Y(n,3,-3,s),Y(n,3,-2,s), Y(n,3,-1,s), Y(n,3,0,s), Y(n,3,1,s), Y(n,3,2,s), Y(n,3,3,s),

поскольку при l=3 магнитное квантовое число может принимать семь значений m=-3,-2,-1,0,1,2,3. Чем выше значение n, тем выше значение энергии для соответствующей f-орбитали. Геометрически f-орбиталь имеет еще более сложную конфигурацию. Аналогично вводятся понятия g и h- орбиталей.

Связь между значением l  и типом орбитали суммирована в таблице:

 значение l         0   1  2   3   4   5

тип орбитали    s    p  d   f    g   h

Энергия электрона в атоме неоднозначно определяется значением главного квантового числа n. Каждому значению n (т.е. каждому значению энергетического уровня) соответствует несколько значений орбитального квантового числа (l), которые называют энергетическими подуровнями. Эти подуровни различаются по энергии. В соответствии с этим говорят об s-подуровне, p-подуровне, d-подуровне и т.д. А электроны, находящиеся на этих подуровнях называют соответственно s-электронами, р-электронами, d-электронами  и т.д. По энергии подуровни в атоме возрастают в следующем порядке:

1s<2s<2p<3s<3p<4s»3d<4p<5s»4d<5p<6s»5d»4f<6p

В такой последовательности происходит заполнение электронами энергетических уровней в атоме. Эта последовательность обусловлена действием двух правил Клечковского:

1.  Заполнение энергетических подуровней электронами происходит таким образом, чтобы сумма n+l была минимальна, т.е.  min(n+l)

2.  Если возможны два различных пути заполнения, при которых выполняется 1 правило, то реализуется тот путь, при котором минимально n, min(n).

Так, например, после подуровня 3p в указанной выше последовательности происходит заполнение не подуровня 3d, а подуровня 4s.  Действительно, для подуровня 3d  n+l=3+2=5, а для 4s  n+l=4+0=4, что отвечает 1 правилу Клечковского.  Для подуровней 6s, 5d, 4f  сумма n+l соответственно равна 6+0, 5+2, 4+3. Для этой последовательности соблюдаются оба правила Клечковского.

Таким образом, в атоме каждому энергетическому уровню соответствует несколько подуровней. Для n>1 число подуровней числено совпадает с n (на втором уровне могут быть только два подуровня, на третьем уровне только три подуровня и т.д.).

Максимальное количество электронов N’, которые могут находиться на подуровне со значением  орбитального квантового числа, равного l,  определяется уравнением

N’=2(2l + 1)

C учетом этой формулы получается, что каждый тип орбитали характеризуется следующими максимальными числами электронов, которые могут на них располагаться

тип орбитали                   s     p    d    f       g      h

максимум электронов     2    6    10   14    18    22

На каждой орбитали располагается не более двух электронов, причем согласно принципу Паули каждая пара электронов в пределах одной и той же орбитали должна иметь антипараллельные спины (т.е. s=1/2 и s=-1/2).

Схему энергетических уровней и подуровней атома для n=3 можно изобразить таким образом

На этом рисунке все подуровни в пределах данных n и l обозначены одним цветом и имеют одинаковую энергию.

Согласно правилу Хунда, устойчивому состоянию электронов в атоме соответствует такое распределение электронов в пределах энергетического подуровня, при котором абсолютное значение суммарного спина электронов максимально.

До введения понятия энергетического подуровня мы записывали электронную конфигурацию (электронное строение) атомов по энергетическим уровням. Так для атома цинка она имела вид  30Zn 2,8,18,2. Теперь, с учетом представлений о существовании на каждом энергетическом уровне соответствующих подуровней, электронное строение атома цинка можно представить более детально.

Для первого энергетического уровня n=1, l=0, следовательно, возможно существование только s-подуровня, на котором может разместиться не более 2 электронов, что отразим записью 1s2.

На втором энергетическом уровне может быть только два подуровня: s и p,  на которых максимальное число электронов равно, соответственно, 2 и 6. Поэтому 8 электронов второго энергетического уровня распределены таким образом: 2s22p6.

Следующие 18  электронов находятся на третьем уровне, на котором должно быть уже три подуровня: s, p и d, на которых максимальное число электронов составляет 2, 6 и 10.  Следовательно, электронную конфигурацию третьего 18-электронного уровня можно представить в виде: 3s23p63d10.

Для последнего 4-го уровня могут существовать 4 подуровня: s,p,d,f, на которых может находиться 2, 6, 10 и 14 электронов. Но в атоме цинка на 4 уровне находится всего 2 электрона. Эти два электрона займут самый низший подуровень 4s. Поэтому электронное строение 4 уровня можно записать в виде: 4s2.

Соединив все полученные фрагменты электронного строения по всем уровням, получаем детализированную картину распределения электронов в атоме цинка: 30Zn 1s22s22p63s23p63d104s2.

Таким образом, основные особенности заполнения электронных оболочек атомов в периодической системе следующие:

1. Начало периода совпадает с началом образования нового энергетического уровня электронного слоя.

Период представляет собой последовательный ряд элементов, атомы которых различаются числом электронов в наружных слоях. Каждый период завершается благородным газом. У благородных газов наружная оболочка состоит из 8 электронов, за исключение гелия, у которого на внешней оболочке только 2 электрона.

2. Элементы главных и побочных подгрупп отличаются порядком заполнения электронных оболочек.

У всех элементов главных подгрупп заполняются только внешние оболочки. При этом у элементов I и II групп заполняются  s-оболочки, поэтому эти элементы называются s-элементами. А у элементов III-VII групп заполняются p-оболочки, поэтому эти элементы называются р-элементами.

У элементов первых подгрупп (за исключением Mn, Zn, Tc, Ag, Cd,  Hg) заполняются внутренние d-оболочки. Такие элементы называются d-элементами.

Элементы, у которых заполняются внутренние f-оболочки, называются f-элементами (лантаноиды и актиноиды). 

Заполнение электронных оболочек электронами в таблице Менделеева происходит в согласии с двумя правилами Клечковского.

Ниже представлено электронное строение всех элементов таблицы Менделеева. Элементы, для которых наблюдается эффект проскока электрона с одного подуровня на другой выделены жирным шрифтом.

1 Н  1s1             1 период

2 He 1s2

3 Li 1s22s1                    2 период

4 Be 1s22s2

5 B   1s22s22p1

6 C  1s22s22p2

7  N   1s22s22p3

8 O   1s22s22p4

9 F   1s22s22p5

10 Ne  1s22s22p6

11 Na  1s22s22p63s1                       3 период

12 Mg  1s22s22p63s

13 Al    1s22s22p63s23p1     

14 Si     1s22s22p63s23p2    

15 P      1s22s22p63s23p3       

16 S      1s22s22p63s23p4      

17 Cl     1s22s22p63s23p5       

18 Ar     1s22s22p63s23p6     

19 K  1s22s22p63s23p6 3d04s1                       4 период

20 Ca  1s22s22p63s23p6 3d0 4s2   

21 Sc  1s22s22p63s23p63d1 4s2     

22 Ti 1s22s22p63s23p63d2 4s2       

23 V 1s22s22p63s23p63d3 4s2        

24 Cr 1s22s22p63s23p63d5 4s1               проскок 1 электрона с 4s на 3d

25 Mn 1s22s22p63s23p63d5 4s2       

26 Fe 1s22s22p63s23p63d6 4s2      

27 Co 1s22s22p63s23p63d7 4s2       

28 Ni 1s22s22p63s23p63d8 4s2       

29 Cu 1s22s22p63s23p63d10 4s1       

30 Zn 1s22s22p63s23p63d10 4s2       

31 Ga 1s22s22p63s23p63d10 4s2 4p

32  Ge 1s22s22p63s23p63d10 4s2 4p

33 As 1s22s22p63s23p63d10 4s2 4p

34 Se 1s22s22p63s23p63d10 4s2 4p

35 Br 1s22s22p63s23p63d10 4s2 4p5

36 Kr 1s22s22p63s23p63d10 4s2 4p

37 Rb 1s22s22p63s23p63d10 4s2 4p6 4do4f05s1              5 период

38 Sr 1s22s22p63s23p63d10 4s2 4p6 4do4f05s2

39 Y 1s22s22p63s23p63d10 4s2 4p6 4d14f05s2

40 Zr 1s22s22p63s23p63d10 4s2 4p6 4d24f05s2

41 Nb 1s22s22p63s23p63d10 4s2 4p6 4d44f05s1

42 Mo 1s22s22p63s23p63d10 4s2 4p6 4d54f05s1

43 Te 1s22s22p63s23p63d10 4s2 4p6 4d54f05s2

44 Ru 1s22s22p63s23p63d10 4s2 4p6 4d74f05s1

45 Rh 1s22s22p63s23p63d10 4s2 4p6 4d84f05s1

46 Pd 1s22s22p63s23p63d10 4s2 4p6 4d104f05s0

47 Ag 1s22s22p63s23p63d10 4s2 4p6 4d104f05s1

48 Cd 1s22s22p63s23p63d10 4s2 4p6 4d104f05s2

49 In 1s22s22p63s23p63d10 4s2 4p6 4d104f05s25p

50 Sn 1s22s22p63s23p63d10 4s2 4p6 4d104f05s25p2

51 Sb 1s22s22p63s23p63d10 4s2 4p6 4d104f05s25p3

52 Te 1s22s22p63s23p63d10 4s2 4p6 4d104f05s25p

53 I 1s22s22p63s23p63d10 4s2 4p6 4d104f05s25p

54 Xe 1s22s22p63s23p63d10 4s2 4p6 4d104f05s25p6

55 Cs 1s22s22p63s23p63d10 4s2 4p6 4d104f05s25p6 5d05f05g06s1       6 период

56 Ba 1s22s22p63s23p63d10 4s2 4p6 4d104f05s25p6 5d05f05g06s2

57 La 1s22s22p63s23p63d10 4s2 4p6 4d104f05s25p6 5d15f05g06s2

58 Ce 1s22s22p63s23p63d10 4s2 4p6 4d104f25s25p6 5d05f05g06s2

59 Pr 1s22s22p63s23p63d10 4s2 4p6 4d104f35s25p6 5d05f05g06s2

60 Nd 1s22s22p63s23p63d10 4s2 4p6 4d104f45s25p6 5d05f05g06s2

61 Pm 1s22s22p63s23p63d10 4s2 4p6 4d104f55s25p6 5d05f05g06s2

62 Sm 1s22s22p63s23p63d10 4s2 4p6 4d104f65s25p6 5d05f05g06s2

63 Eu 1s22s22p63s23p63d10 4s2 4p6 4d104f75s25p6 5d05f05g06s2

64 Gd 1s22s22p63s23p63d10 4s2 4p6 4d104f75s25p6 5d15f05g06s2

65 Tb 1s22s22p63s23p63d10 4s2 4p6 4d104f95s25p6 5d05f05g06s2

66 Dy 1s22s22p63s23p63d10 4s2 4p6 4d104f105s25p6 5d05f05g06s2

67 Ho 1s22s22p63s23p63d10 4s2 4p6 4d104f115s25p6 5d05f05g06s2

68 Er 1s22s22p63s23p63d10 4s2 4p6 4d104f125s25p6 5d05f05g06s2

69 Tm 1s22s22p63s23p63d10 4s2 4p6 4d104f135s25p6 5d05f05g06s2

70 Yb 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d05f05g06s2

71 Lu 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d15f05g06s2

72 Hf 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d25f05g06s2

73 Ta 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d35f05g06s2

74 W 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d45f05g06s2

75 Re 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d55f05g06s2

76 Os 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d65f05g06s2

77 Ir 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d75f05g06s2

78 Pt 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d95f05g06s1

79 Au 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s1

80 Hg 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s2

81 Tl 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p

82 Pb 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p

83 Bi  1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p

84 Po  1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p4

85 At  1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p

86 Rn  1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p6

87 Fr  1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p6d07s1     7 период

88 Ra 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p6d07s2

89 Ac 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p6d17s2

90 Th 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f05g06s26p6d27s2

91Pa 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f25g06s16p6d17s2

92 U 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f35g06s26p6d17s2

93 Np  1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f45g06s26p6d17s2

94 Pu  1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f65g06s26p6d07s2

95 Am 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f75g06s26p6d07s2

96 Cm 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f75g06s26p6d17s2

97 Bk  1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f85g06s26p6d17s2

Вместе с этой лекцией читают "3.2. Внешние признаки рукописей XVII-XIX вв.".

98 Cf 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f105g06s26p6d07s2

99 Es 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f115g06s26p6d07s2

100 Fm 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f125g06s26p6d07s2

101 Md 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f135g06s26p6d07s2

102 No 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f145g06s26p6d07s2

103 Lr 1s22s22p63s23p63d10 4s2 4p6 4d104f145s25p6 5d105f145g06s26p6d17s2

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее