Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » Kleinert - Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets - ed.4 - 2006

Kleinert - Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets - ed.4 - 2006, страница 11

PDF-файл Kleinert - Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets - ed.4 - 2006, страница 11 Математика (721): Книга - в нескольких семестрахKleinert - Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets - ed.4 - 2006: Математика - PDF, страница 11 (721)2013-09-15СтудИзба

Описание файла

PDF-файл из архива "Kleinert - Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets - ed.4 - 2006", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 11 страницы из PDF

, . . .} called Poisson brackets:{A, B} ≡∂A ∂B ∂B ∂A−,∂pi ∂qi∂pi ∂qi(1.21)again with the Einstein summation convention for the repeated index i. The Poissonbrackets have the obvious properties{A, B} = − {B, A}{A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0antisymmetry,(1.22)Jacobi identity.(1.23)If two quantities have vanishing Poisson brackets, they are said to commute.The original Hamilton equations are a special case of (1.20):∂p ∂H∂Hd∂H ∂pi− i=−,pi = {H, pi} =dt∂pj ∂qj∂pj ∂qj∂qid∂H ∂qi∂q ∂H∂Hqi = {H, qi } =− i=.dt∂pj ∂qj∂pj ∂qj∂pi(1.24)By definition, the phase space variables pi , qi satisfy the Poisson bracketsnpi , qjnpi , pjnqi , qjooo= δij ,= 0,(1.25)= 0.A function O(pi, qi ) which has no explicit dependence on time and which, moreover, commutes with H (i.e., {O, H} = 0), is a constant of motion along the classicalpath, due to (1.20).

In particular, H itself is often time-independent, i.e., of the formH = H(pi , qi ).(1.26)H. Kleinert, PATH INTEGRALS51.1 Classical MechanicsThen, since H commutes with itself, the energy is a constant of motion.The Lagrangian formalism has the virtue of being independent of the particularchoice of the coordinates qi . Let Qi be any other set of coordinates describing thesystem which is connected with qi by what is called a local 2 or point transformationqi = fi (Qj , t).(1.27)Certainly, to be of use, this relation must be invertible, at least in some neighborhoodof the classical path,Qi = f −1 i (qj , t).(1.28)Otherwise Qi and qi could not both parametrize the same system.

Therefore, fimust have a nonvanishing Jacobi determinant:∂fi∂Qjdet!6= 0.(1.29)In terms of Qi , the initial Lagrangian takes the formL0 Qj , Q̇j , t ≡ L fi Qj , t , f˙i Qj , t , tand the action readsA =Z=Ztbtatbta(1.30)dt L0 Qj (t), Q̇j (t), t(1.31)dt L fi Qj (t), t , f˙i Qj (t), t , t .By varying the upper expression with respect to δQj (t), δ Q̇j (t) while keepingδQj (ta ) = δQj (tb ) = 0, we find the equations of motiond ∂L0∂L0−= 0.dt ∂ Q̇j∂Qj(1.32)The variation of the lower expression, on the other hand, givesδA =Ztb=Ztbtatadtdt∂L ˙∂Lδfi +δf∂qi∂ q̇i i!!∂Ld ∂L∂L tb−δfi +δf .∂qi dt ∂ q̇i∂ q̇i i ta(1.33)If δqi is arbitrary, then so is δfi . Moreover, with δqi (ta ) = δqi (tb ) = 0, also δfivanishes at the endpoints.

Hence the extremum of the action is determined equallywell by the Euler-Lagrange equations for Qj (t) [as it was by those for qi (t)].2The word local means here at a specific time. This terminology is of common use in fieldtheory where local means, more generally, at a specific spacetime point .61 FundamentalsNote that the locality property is quite restrictive for the transformation of thegeneralized velocities q̇i (t). They will necessarily be linear in Q̇j :∂fi∂fq̇i = f˙i (Qj , t) =Q̇j + i .∂Qj∂t(1.34)In phase space, there exists also the possibility of performing local changes ofthe canonical coordinates pi , qi to new ones Pj , Qj .

Let them be related bypi = pi (Pj , Qj , t),(1.35)qi = qi (Pj , Qj , t),with the inverse relationsPj = Pj (pi , qi , t),(1.36)Qj = Qj (pi , qi , t).However, while the Euler-Lagrange equations maintain their form under any localchange of coordinates, the Hamilton equations do not hold, in general, for any transformed coordinates Pj (t), Qj (t). The local transformations pi (t), qi (t) → Pj (t), Qj (t)for which they hold, are referred to as canonical .

They are characterized by the forminvariance of the action, up to an arbitrary surface term,tbZtaZdt [pi q̇i − H(pi , qi , t)] =tbtahdt Pj Q̇j − H 0 (Pj , Qj , t)tb+ F (Pj , Qj , t)tai(1.37),where H 0 (Pj , Qj , t) is some new Hamiltonian. Its relation with H(pi , qi , t) must bechosen in such a way that the equality of the action holds for any path pi (t), qi (t)connecting the same endpoints (at least any in some neighborhood of the classicalorbits). If such an invariance exists then a variation of this action yields for Pj (t)and Qj (t) the Hamilton equations of motion governed by H 0 :Ṗi = −Q̇i∂H 0,∂Qi(1.38)∂H 0.=∂PiThe invariance (1.37) can be expressed differently by rewriting the integral on theleft-hand side in terms of the new variables Pj (t), Qj (t),Ztbtadt(pi∂qi∂qi∂qṖj +Q̇j + i∂Pj∂Qj∂t!)− H(pi (Pj , Qj , t), qi (Pj , Qj , t), t) ,(1.39)and subtracting it from the right-hand side, leading toZtbta(∂qP j − pi i∂Qj!dQj − pi∂qidP∂P!j )j∂q− H + pi i − H dt∂t0=tb−F (Pj , Qj , t) .(1.40)taH.

Kleinert, PATH INTEGRALS71.1 Classical MechanicsThe integral is now a line integral along a curve in the (2N + 1)-dimensional space,consisting of the 2N-dimensional phase space variables pi , qi and of the time t.The right-hand side depends only on the endpoints. Thus we conclude that theintegrand on the left-hand side must be a total differential. As such it has to satisfythe standard Schwarz integrability conditions [2], according to which all secondderivatives have to be independent of the sequence of differentiation. Explicitly,these conditions are∂pi ∂qi∂q ∂pi− i= δkl ,∂Pk ∂Ql ∂Pk ∂Ql∂q ∂pi∂pi ∂qi− i= 0,∂Pk ∂Pl ∂Pk ∂Pl(1.41)∂pi ∂qi∂qi ∂pi−= 0,∂Qk ∂Ql ∂Qk ∂Qland∂pi ∂qi∂q ∂p− i i∂t ∂Pl∂t ∂Pl=∂(H 0 − H),∂Pl(1.42)∂qi ∂pi∂(H 0 − H)∂pi ∂qi−=.∂t ∂Ql∂t ∂Ql∂QlThe first three equations define the so-called Lagrange brackets in terms of whichthey are written as(Pk , Ql ) = δkl ,(Pk , Pl ) = 0,(Qk , Ql ) = 0.(1.43)Time-dependent coordinate transformations satisfying these equations are calledsymplectic.

After a little algebra involving the matrix of derivativesits inverseJ =J −1 = ∂Pi /∂pj∂Pi /∂qj∂Qi /∂pj∂Qi /∂qj∂pi /∂Pj∂pi /∂Qj∂qi /∂Pj∂qi /∂Qjand the symplectic unit matrixE=0−δijδij0!,(1.44)(1.45),,(1.46)we find that the Lagrange brackets (1.43) are equivalent to the Poisson brackets{Pk , Ql } = δkl ,{Pk , Pl } = 0,{Qk , Ql } = 0.(1.47)81 FundamentalsThis follows from the fact that the 2N × 2N matrix formed from the Lagrangebrackets−(Qi , Pj )−(Qi , Qj )L≡(1.48)(Pi , Pj )(Pi , Qj )can be written as (E −1 J −1 E)T J −1 , while an analogous matrix formed from thePoisson bracketsono  nP,Q−P,Pijij(1.49)P ≡ nono Qi , Qj− Qi , Pjis equal to J(E −1 JE)T . Hence L = P −1 , so that (1.43) and (1.47) are equivalent toeach other.

Note that the Lagrange brackets (1.43) [and thus the Poisson brackets(1.47)] ensure pi q̇i − Pj Q̇j to be a total differential of some function of Pj and Qj inthe 2N-dimensional phase space:pi q̇i − Pj Q̇j =dG(Pj , Qj , t).dt(1.50)The Poisson brackets (1.47) for Pi , Qi have the same form as those in Eqs.

(1.25)for the original phase space variables pi , qi .The other two equations (1.42) relate the new Hamiltonian to the old one. Theycan always be used to construct H 0 (Pj , Qj , t) from H(pi , qi , t). The Lagrange brackets (1.43) or Poisson brackets (1.47) are therefore both necessary and sufficient forthe transformation pi , qi → Pj , Qj to be canonical.A canonical transformation preserves the volume in phase space.

This followsfrom the fact that the matrix product J(E −1 JE)T is equal to the 2N × 2N unitmatrix (1.49). Hence det (J) = ±1 andYZ[dpi dqi ] =iYZ hidPj dQj .j(1.51)It is obvious that the process of canonical transformations is reflexive. It maybe viewed just as well from the opposite side, with the roles of pi , qi and Pj , Qjexchanged [we could just as well have considered the integrand (1.40) as a completedifferential in Pj , Qj , t space].Once a system is described in terms of new canonical coordinates Pj , Qj , weintroduce the new Poisson brackets{A, B}0 ≡∂A ∂B∂B ∂A−,∂Pj ∂Qj∂Pj ∂Qj(1.52)and the equation of motion for an arbitrary observable quantity O Pj (t), Qj (t), tbecomes with (1.38)dO n 0 o0 ∂O= H ,O +,(1.53)dt∂tH.

Kleinert, PATH INTEGRALS91.1 Classical Mechanicsby complete analogy with (1.20). The new Poisson brackets automatically guaranteethe canonical commutation rulesnPi , QjnPi , Pjno0= δij ,o0= 0.o0Qi , Qj(1.54)= 0,A standard class of canonical transformations can be constructed by introducinga generating function F satisfying a relation of the type (1.37), but dependingexplicitly on half an old and half a new set of canonical coordinates, for instanceF = F (qi , Qj , t).(1.55)One now considers the equationZtbtadt [pi q̇i − H(pi , qi , t)] =replaces Pj Q̇j by −Ṗj Qj +Ztbta"#ddt Pj Q̇j − H (Pj , Qj , t) + F (qi , Qj , t) , (1.56)dtdPQ,dt j j0definesF (qi , Pj , t) ≡ F (qi , Qj , t) + Pj Qj ,and works out the derivatives.

This yieldsZtbta=nodt pi q̇i + Ṗj Qj − [H(pi , qi , t) − H 0 (Pj , Qj , t)]Ztbta()∂F∂F∂F(qi , Pj , t)q̇i +(qi , Pj , t)Ṗj +(q , P , t) .dt∂qi∂Pj∂t i j(1.57)A comparison between the two sides renders for the canonical transformation theequations∂F (qi , Pj , t),pi =∂qi(1.58)∂Qj =F (qi , Pj , t).∂PjThe second equation shows that the above relation between F (qi , Pj , t) andF (qi , Qj , t) amounts to a Legendre transformation.The new Hamiltonian isH 0 (Pj , Qj , t) = H(pi, qi , t) +∂F (qi , Pj , t).∂t(1.59)Instead of (1.55) we could, of course, also have chosen functions with other mixturesof arguments such as F (qi , Pj , t), F (pi , Qj , t), F (pi, Pj , t) to generate simple canonicaltransformations.101 FundamentalsA particularly important canonical transformation arises by choosing a generating function F (qi , Pj ) in such a way that it leads to time-independent momentaPj ≡ αj .

Coordinates Qj with this property are called cyclic. To find cyclic coordinates we must search for a generating function F (qj , Pj , t) which makes thetransformed H 0 in (1.59) vanish identically. Then all derivatives with respect to thecoordinates vanish and the new momenta Pj are trivially constant. Thus we seekfor a solution of the equation∂F (qi , Pj , t) = −H(pi , qi , t),∂t(1.60)where the momentum variables in the Hamiltonian obey the first equation of (1.58).This leads to the following partial differential equation for F (qi , Pj , t):∂t F (qi , Pj , t) = −H(∂qi F (qi , Pj , t), qi , t),(1.61)called the Hamilton-Jacobi equation.A generating function which achieves this goal is supplied by the action functional(1.14).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5304
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее