Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » Дж. Деммель - Вычислительная линейная алгебра

Дж. Деммель - Вычислительная линейная алгебра

Описание файла

PDF-файл из архива "Дж. Деммель - Вычислительная линейная алгебра", который расположен в категории "книги и методические указания". Всё это находится в предмете "квантовые вычисления" из седьмого семестра, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст из PDF

Дж. ДЕММЕЛЬ ВЫЧИСЛИТЕЛЬНАЯ ЛИНЕЙНАЯ АЛГЕБРА ТЕОРИЯ И ПРИЛОЖЕНИЯ Перевод с английского Х. Д. Икрамова Москва «Мир» 2001 УДК 519.852.6 ББК 22.193 Д 30 1ЯВХ 5-03-003402-1 Книга известного американского математика-вычислителя представляет собой учебник повышенного уровня по вычислительным методам линейной алгебры, рядом особенностей выделяющийся среди изданий этого типа: — знакомит с современными методами решения линейных систем, задач наименьших квадратов, вычисления собственных значений и сингулярных разложений; — прививает читателям навыки эффективного решЕния реальных задач путем выбора наилучших алгоритмов; — содержит упражнения и задачи, облегчающие усвоение материала; — изложение сопровождается многочисленными ссылками на Интернет- ресурсы по реализации конкретных алгоритмов (Ма!!аЬ, 1.АРАСК); — материал книги самодостаточен, от читателя требуется только знакомство с основами линейной алгебры.

Для студентов и аспирантов вузОв и университетов, изучающих вычислительную математику и ее приложения. ВВК 22.103 Издание осуществлено при подцержке Российского фонда фупцаментвльных исследований по проекту га 00-01-14024 Редакция яитературьз по математическим наукам Сорупйй! © 1997 Ьу !Ье Яос!есу !ог !лбов!па! апб Арр!!ес! МагЬегпайсз © перевод на русский язык, оформление, «Мир», 2001 1$Б!Ч 3-03-003402-1 (русск.) 1ВВ!Ч 0-ВВВ71-ВВ9-7 (англ.) Деммель Дж. ДЗО Вычислительная линейная алгебра. Теория н приложения. Пер. с англ.

— Мл Мнр, 2001. — 430 с., ял. От переводчика В недоброй памяти ельцинское десятилетие серьезная иностранная литература по математике на русский язык практически не переводилась. Наоборот, в эти годы многие российские математики публиковали свои книги за рубежом. Мотивы были разные: для одних — невозможность издать книгу на родине, для других — шанс приобрести или утвердить свое научное имя на Западе, для третьих — средство занять там хорошую вакансию.

Не будем осуждать этих последних; вспомним лучше, какая научная политика проводилась долгое время российскими верхами, и удивимся еще раз их своекорыстию и слепоте. Кажется, что положение дел понемногу начинает улучшаться. Предлагаемая книга есть одно из свидетельств этому. Читатель среднего и старшего возраста, думаю, будет рад увидеть на обложке знакомую эмблему издательства «Мир», в девяностые годы почти исчезнувшую с полок в книжных магазинах (исчезли, впрочем, и сами полки для научной литературы). Надеюсь, что у книги будут и молодые читатели, возможно, не знающие, что в советское время «Мир» был почти монополистом в области переводной литературы по естественным наукам. Отрадно, что возрождение издательства опирается на книги такой актуальной тематики и такого высокого качества, как книга Дж.

Деммеля. Эта книга— лучшая из многих учебников по вычислительной линейной алгебре, изданных за последние годы на Западе, а ее автор является бесспорным лидером в данной области. В оригинале книга предназначалась для аспирантов первого года обучения, специализирующихся в компьютерных и инженерных науках. Учитывая различие вузовских программ по математике в России и США, можно сказать, что у нас эта книга будет доступна (и полезна) студентам математических факультетов, начиная со второго курса, а также студентам многих инженерных и естественно-научных специализаций, сталкивающимся с необходимостью проводить сколько-нибудь сложные расчеты.

Много нового для себя найдут в книге и специалисты. Издание этого перевода было поддержано Российским фондом фундаментальных исследований. Хочется поблагодарить отдел издательских проектов фонда за обнадеживающую тенденцию в его работе н хороший выбор книги. Х. Д. Икра««он Предисловие к русскому изданию Известие, что моя книга переведена на русский язык, доставило мне большое удовлетворение.

Вычислительнач линейная алгебра всегда являлась полем международного сотрудничества; я надеюсь, что этот перевод будет вкладом в продолжение такого сотрудничества. После выхода в 1997 г. английского издания этой книги в вычислительной алгебре продолжали происходить значительные события. К ним относится появление: более эффективных и точных математических алгоритмов (таких, как обещанный в разд. 5.3 новый вариант обратной итерации, или ряд усовершенствований в итерационных методах из гл.

6 и 7); более быстрого и дружественного к пользователю программного обеспечения (методов, более полно использующих современные компьютерные, в особенности параллельные архитектуры по сравнению с теми, что описаны в равд. 2.б, и более совершенных программных библиотек, реализующих эти методы); улучшенных справочных материалов (см., например, книгу Ва1 Х., Пепипе! Л., Попяагга Л., ВпЬе А., чап серег Ъогз1 Н. (ед1согз).

Тешр1асез Гог ФЬе Бо1пбоп оГ А1яеЬгшс Е1кепга1пе РгоЫешз — А Ргасбса1 СпЫе. 51АМ, 2000, помогающую пользователю в выборе наилучшего, среди многих существующих, численного метода при решении спектральных задач). Я полагаю, что, несмотря на эти изменения, книга по-прежнему достигает целей, намеченных в ее первоначальном предисловии. В частности, при подготовке студентов, специализирующихся в различных инженерных и естественно-научных дисциплинах, для решения практических задач с использованием наиболее эффективных из имеющихся методов. Я надеюсь, что читатели русского перевода получат удовольствие от того взаимодействия математики, компьютерных приемов и приложений, которое делает вычислительную линейную алгебру столь живой наукой.

Джим Деммель 1в лнеарл з001 г. Предисловие В этом учебнике рассматриваются прямые и итерационные методы для решения линейных систем, задачи наименьших квадратов, задачи на собственные значения и методы вычисления сингулярного рыложення. Предварительные варианты книги использовались автором, начиная с 1990 г., при чтении спецкурсов для аспирантов на кафедре математики Калифорнийского Университета в Беркли, а еще ранее — в Курантовском Институте. При написании этого учебника я старался добиться следующих целей: 1. Учебник должен быть привлекательным для аспирантов первого года различных инженерных и естественнонаучных специализаций.

2. Он должен быть самодостаточным, предполагая у читателя лишь хорошее владение студенческим курсом линейной алгебры. 3. Учащиеся должны освоить математические основы данной области, а также научиться писать свои хорошие программы численных методов либо уметь выбирать такие программы среди существующих. 4. Учащиеся должны приобрести практические навыки эффективного решения реальных задач.

В частности, они должны получить представление о наилучших методах внутри каждого раздела. Даже если в учебнике анализируются простейшие варианты методов, они должны знать, в какой ситуации им понадобятся основные версии и где их можно найти. 5. Все сказанное нужно осуществить в течение одного семестра, поскольку большинство учащихся не располагают ббльшим временем для изучения данного предмета. Побудительным мотивом при написании этой книги мне послужило то обстоятельство, что существующие учебники, даже очень хорошие, не удовлетворяют указанным требованиям. Книга Голуба и Ван Лоана [121] слишком энциклопедична по стилю, а в то же время опускает ряд важных вопросов, например многосеточные методы, декомпозицию области и недавно разработанные алгоритмы для задач на собственные значения.

Некоторых из современных алгоритмов нет и в книгах Уоткинса [252] и Трефетена и Бау [243]. Я полагаю, что указанные пять целей мной достигнуты. Трудней всего было удовлетворить пятое требование, особенно потому, что со временем книга разрасталась за счет включения в нее результатов последних исследований и новых разделов, отражающих запросы моих коллег. При одном из возможных разумных построений односеместрового курса, основанного на материале книги, в него должны были бы войти: 7, вплоть до (и включая) разд.

7.3. ° глава ° глава ° глава ° глава ° глава ° глава 6.10; ° глава 1, исключая раздел 1.5.1; 2, исключая разделы 2.2.1, 2.4.3, 2.5, 2.6.3 и 2.6.4; 3, исключая разделы 3.5 и 3.6; 4, вплоть до [и включая) раздел 4.4.5; 5, исключая разделы 5.2.1, 5.3.5, 5.4 и 5.5; 6, кроме разд. 6.3.3, 6.5.5, 6.5.6, 6.6.6, 6.7.2, 6.7.3, 6.7.4, 6.8, 6.9.2 и Предисловие Среди примечательных особенностей этой книги хочу упомянуть: ° специальную страницу в Интернете, содержащую написанные на языке Ма!1аЬ программы для примеров и домашних заданий в тексте книги; ° многочисленные рекомендации и справки, относящиеся к наилучшим современным программам (из пакета ЬАРАСК и других); ° обсуждение вопроса о том, как влияют на конструирование алгоритмов современные компьютерные архитектуры с использованием кэш-памяти; ° сравнение производительности конкурирующих алгоритмов для задач наименьших квадратов и симметричных задач на собственные значения; ° обсуждение ряда итерационных методов от простейшею метода Якоби до многосеточных алгоритмов с детальным сравнением их производительности при решении уравнения Пуассона на квадратной сетке; ° подробное обсуждение и численные примеры для алгоритма Ланцоша, используемого при решении симметричных спектральных задач; ° численные примеры, взятые из различных приложений, простирающихся от колебаний механических систем до вычислительной геометрии; ° разделы о «теории относительных возмущений» и соответствующих высокоточных алгоритмах для симметричных спектральных задач и сингулярного разложения; ° интерпретацию спектральных алгоритмов как динамических систем.

Адрес Ь1«р://«чч»ч.я!аш.огя/Ьоо!ея/е!епппе1/«1епппе! с!аяя упоминаемой выше Интернет-страницы в тексте книги заменяется на сокращение НОМЕРАСЕ. Используются также следующие два сокращения: РАНАЬЬЕЬ НОМЕРАСЕ заменяет адрес Ь1Ср;//«ч~ч«ч.я1аш.огя/Ьоо!ся/е1епппе1/«1епнпе! рагаПе!с1аяя и относится к смежному курсу по параллельным вычислениям, который ведет автор; 1«ЕТЫВ есть сокращение для Ы1р://~ч«ч«ч.пес!!Ь.огб. Домашние задания, в зависимости от их сложности, помечаются описаниями «легкое», «средней трудности» или «трудное». Задания со значительным объемом программирования сопровождаются меткой «программирование».

Я обязан многим лицам за участие в подготовке книги. Наиболее значительно было участие ХЬо)пп Ва1, который использовал материалы книги в Техая А ее М аш! !Ье 1)п!чегя!гу о1 Кеп!исйу и сделал ряд замечаний и полезных предложений. Отмечу А1ап Еде1шап (М1Т), Маг!!и Сп!ЬпесЬг (ЕТН Епг!сЬ), Ъ'е1че! КаЬап (Ваг!«е1еу), бкоторые преподавали по рукописи книги в своих учебных центрах, а также Н!сЬагй ЬеЬоисс1, Вегея1огс! Раг!ее« и многих анонимных читателей, которые дали подробные комментарии по различным разделам книги. Кроме того, А1ап Еде1шап и Маге!и Сн!ЬпесЬ! проявили большое гостеприимство, когда я готовил окончательный вариант книги. Таблица 2.2 взята из диссертации моего бывшего студента Х!аоуе ЬЬ Я благодарен Маг)«Адашя, Тяп-У! СЬеп, 1пбег1И ПЬ!1!оп, Лап Хпп Не, Ме!о«1у 1чогу, Х1аоуе Ы, Вегпб Р1гопппег, Нпял Неп, Кеп Б!ап1еу, которые вместе с другими студентами из университетов Сонгапс, Вег1«е!еу, Кеп1пс1су и из М1Т в течение ряда лет помогали мне вычищать рукопись.

Свежие статьи
Популярно сейчас