Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » 9. Резолютивный вывод. Корректность резолютивного вывода. Применение метода резолюций

9. Резолютивный вывод. Корректность резолютивного вывода. Применение метода резолюций (В.А. Захаров - Лекции), страница 2

PDF-файл 9. Резолютивный вывод. Корректность резолютивного вывода. Применение метода резолюций (В.А. Захаров - Лекции), страница 2 Математическая логика и логическое программирование (53088): Лекции - 7 семестр9. Резолютивный вывод. Корректность резолютивного вывода. Применение метода резолюций (В.А. Захаров - Лекции) - PDF, страница 2 (53088) - СтудИзба2019-09-18СтудИзба

Описание файла

Файл "9. Резолютивный вывод. Корректность резолютивного вывода. Применение метода резолюций" внутри архива находится в папке "В.А. Захаров - Лекции". PDF-файл из архива "В.А. Захаров - Лекции", который расположен в категории "". Всё это находится в предмете "математическая логика и логическое программирование" из 7 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 2 страницы из PDF

D10 = P(x)2. D20 =¬P(f (x))3. НОУ P(x), P(f (x)) = ∅,1. D100 = P(x1 )2. D200 = ¬P(f (x2 ))и поэтому D10 , D20не имеют резольвенты.резольвента D100 , D200 .3. D300 = Итак, наш девиз:НОВЫЙ ДИЗЪЮНКТ — НОВЫЕ ПЕРЕМЕННЫЕ.РЕЗОЛЮТИВНЫЙ ВЫВОДРезолютивный вывод называется успешным (или, по другому,резолютивным опровержением ), если этот вывод оканчиваетсяпустым дизъюнктом .В чем же состоит успех такого резолютивного вывода и чтопри этом опровергнуто?Успешный вывод — это свидетельство того, что системадизъюнктов S противоречива и опровергнуто предположениео ее выполнимости!Но это придется обосновать.КОРРЕКТНОСТЬ РЕЗОЛЮТИВНОГОВЫВОДАТеорема корректности резолютивного выводаЕсли из системы дизъюнктов S резолютивно выводим пустойдизъюнкт , то S — противоречивая система дизъюнктов.Доказательство теоремыПустой дизъюнкт тождественно ложен, т.е. не имеет моделей.Покажем, что каждый дизъюнкт, резолютивно выводимый изS, является логическим следствием S.

ТогдаS |= ,и это означает, что S также не имеет моделей, т.е. являетсяпротиворечивой системой.Остается доказать две леммы.КОРРЕКТНОСТЬ РЕЗОЛЮТИВНОГОВЫВОДАЛемма 1.Если D0 — резольвента дизъюнктов D1 и D2 , то D1 , D2 |= D0Доказательство леммы 1.D1 = D10 ∨L1 , D2 = D20 ∨¬L2 , θ ∈ НОУ(L1 , L2 ), D0 = (D10 ∨D20 )θТаким образом, L1 θ = L2 θ = L0 .Поэтому мы получаем следующие соотношенияD1 , D2 |= D1 θ,D1 , D2 |= D10 θ ∨ L1 θ,D1 , D2 |= D10 θ ∨ L0 ,D1 , D2 |= D10 θ ∨ D20 θ ∨ L0 ,D1 , D2 |= D2 θD1 , D2 |= D20 θ ∨ ¬L2 θD1 , D2 |= D20 θ ∨ ¬L0D1 , D2 |= D10 θ ∨ D20 θ ∨ ¬L0D1 , D2 |= D10 θ ∨ D20 θD1 , D2 |= D0Вот и все.

КОРРЕКТНОСТЬ РЕЗОЛЮТИВНОГОВЫВОДАЛемма 2.Если D0 — склейка дизъюнкта D, то D |= D0 .Доказательство леммы 2.Самостоятельно.ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙПример.Рассмотрим формулу ϕ∀x∀y ∃v ∀u(A(u, v ) → B(y , u))&(¬∃wA(w , u) → ∀zA(z, v ))→ ∃yB(x, y )ЗадачаПроверить, верно ли, что |= ϕ.РешениеМетодом резолюций.ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 1.

Покажем, что формула ϕ1 = ¬ϕ противоречивая.ϕ1 = ¬∀x∀y ∃v ∀u(A(u, v ) → B(y , u)) &(¬∃wA(w , u) → ∀zA(z, v ))→ ∃yB(x, y )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2. Приведем ϕ1 к ПНФ ϕ2 .Исходная формула¬∀x∀y ∃v ∀u(A(u, v ) → B(y , u)) &(¬∃wA(w , u) → ∀zA(z, v ))→ ∃yB(x, y )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2. Приведем ϕ1 к ПНФ ϕ2 .Переименование переменных¬∀x∀y 0 ∃v ∀u(A(u, v ) → B(y 0 , u)) &(¬∃wA(w , u) → ∀zA(z, v ))→ ∃y 00 B(x, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2.

Приведем ϕ1 к ПНФ ϕ2 .Удаление импликаций¬∀x¬∀y 0 ∃v ∀u(¬A(u, v ) ∨ B(y 0 , u)) &(¬¬∃wA(w , u) ∨ ∀zA(z, v ))∨ ∃y 00 B(x, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2. Приведем ϕ1 к ПНФ ϕ2 .Продвижение отрицаний∃x∀y 0 ∃v ∀u(¬A(u, v ) ∨ B(y 0 , u)) &(∃wA(w , u) ∨ ∀zA(z, v ))& ∀y 00 ¬B(x, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 2. Приведем ϕ1 к ПНФ ϕ2 .Вынесение кванторовϕ2 =∃x∀y 0 ∃v ∀u∃w ∀z∀y 00(¬A(u, v ) ∨ B(y 0 , u)) &(A(w , u) ∨ A(z, v )) &¬B(x, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 3.

Приведем ϕ2 к ССФ ϕ3 .ϕ3 =∀y 0∀u∀z∀y 00(¬A(u, f (y 0 )) ∨ B(y 0 , u)) &(A(g (y 0 , u), u) ∨ A(z, f (y 0 ))) & ¬B(c, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 4. Формирование системы дизъюнктов Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 5. Резолютивный вывод из Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )1.

D10 = ¬A(u1 , f (y10 )) ∨ B(y10 , u1 ),2. D20 = A(g (y20 , u2 ), u2 ) ∨ A(z2 , f (y20 )),3. D30 = A(g (y30 , f (y30 )), f (y30 )),4. D40 = B(y40 , g (y40 , f (y40 ))),5. D50 = ¬B(c, y500 ),6. D60 = .ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 5. Резолютивный вывод из Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )1. D10 = ¬A(u1 , f (y10 )) ∨ B(y10 , u1 ), (вариант D1 )2. D20 = A(g (y20 , u2 ), u2 ) ∨ A(z2 , f (y20 )),3. D30 = A(g (y30 , f (y30 )), f (y30 )),4.

D40 = B(y40 , g (y40 , f (y40 ))),5. D50 = ¬B(c, y500 ),6. D60 = .ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 5. Резолютивный вывод из Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )1. D10 = ¬A(u1 , f (y10 )) ∨ B(y10 , u1 ),2. D20 = A(g (y20 , u2 ), u2 ) ∨ A(z2 , f (y20 )), (вариант D2 )3. D30 = A(g (y30 , f (y30 )), f (y30 )),4. D40 = B(y40 , g (y40 , f (y40 ))),5.

D50 = ¬B(c, y500 ),6. D60 = .ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 5. Резолютивный вывод из Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )1. D10 = ¬A(u1 , f (y10 )) ∨ B(y10 , u1 ),2. D20 = A(g (y20 , u2 ), u2 ) ∨ A(z2 , f (y20 )),3. D30 = A(g (y30 , f (y30 )), f (y30 )), (склейка D20 )4. D40 = B(y40 , g (y40 , f (y40 ))),5.

D50 = ¬B(c, y500 ),6. D60 = .ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 5. Резолютивный вывод из Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )1. D10 = ¬A(u1 , f (y10 )) ∨ B(y10 , u1 ),2. D20 = A(g (y20 , u2 ), u2 ) ∨ A(z2 , f (y20 )),3. D30 = A(g (y30 , f (y30 )), f (y30 )),4. D40 = B(y40 , g (y40 , f (y40 ))), (резольвента D10 и D30 )5. D50 = ¬B(c, y500 ),6. D60 = .ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 5. Резолютивный вывод из Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )1. D10 = ¬A(u1 , f (y10 )) ∨ B(y10 , u1 ),2.

D20 = A(g (y20 , u2 ), u2 ) ∨ A(z2 , f (y20 )),3. D30 = A(g (y30 , f (y30 )), f (y30 )),4. D40 = B(y40 , g (y40 , f (y40 ))),5. D50 = ¬B(c, y500 ), (вариант D3 )6. D60 = .ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЭтап 5. Резолютивный вывод из Sϕ .Sϕ =nD1 = ¬A(u, f (y 0 )) ∨ B(y 0 , u),D2 = A(g (y 0 , u), u) ∨ A(z, f (y 0 )), oD3 = ¬B(c, y 00 )1. D10 = ¬A(u1 , f (y10 )) ∨ B(y10 , u1 ),2. D20 = A(g (y20 , u2 ), u2 ) ∨ A(z2 , f (y20 )),3. D30 = A(g (y30 , f (y30 )), f (y30 )),4. D40 = B(y40 , g (y40 , f (y40 ))),5. D50 = ¬B(c, y500 ),6. D60 = . (резольвента D40 и D50 )ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙРешениеЗаключение.

Успешный резолютивный вывод из Sϕ означает,что Sϕ — противоречивая система дизъюнктов.Значит, ϕ1 = ¬ϕ — невыполнимая формула.Значит, ϕ — общезначимая формула,|= ϕ.ПРИМЕНЕНИЕ МЕТОДА РЕЗОЛЮЦИЙВопрос полнотыА можно ли таким способом проверять общезначимость любыхформул?Этот вопрос может быть уточнен так:1. Верно ли, что для любой общезначимой формулы ϕможно построить успешный резолютивный вывод изсоответствующей системы дизъюнктов Sϕ ?2. Верно ли, что в том случае, когда формулы ϕнеобщезначима (система дизъюнктов Sϕ выполнима), мысможем каким-то образом обнаружить невозможностьпостроения успешного резолютивного вывода?КОНЕЦ ЛЕКЦИИ 9..

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
443
Средний доход
с одного платного файла
Обучение Подробнее