Главная » Все файлы » Просмотр файлов из архивов » Документы » В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования

В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования (В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования.doc), страница 32

2019-04-28СтудИзба

Описание файла

Документ из архива "В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования.doc", который расположен в категории "". Всё это находится в предмете "практика расчётов на пэвм" из 1 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования"

Текст 32 страницы из документа "В.Г. Баула - Введение в архитектуру ЭВМ и системы программирования"

.err

exitm

endif

Некоторые характеристики имени можно получить также, применив к этому имени одноместный оператор Ассемблера .type. Результатом работы этого оператора является целое значение в формате байта (i8), при этом каждый бит в этом байте, если он установлен в "1", указывает на наличие некоторой характеристики имени. Ниже приведены номера некоторых битов в байте, которое этот оператор вырабатывает, будучи применённым к своему имени-операнду (напомним, что биты в байте нумеруются справа-налево, начиная с нуля):

Так, например, для имени, описанного в Ассемблере как

X dw ?

оператор .type X = 00100001b = 3310. Полностью про этот оператор можно прочитать в учебнике [5], а мы на этом закончим наше краткое знакомство с возможностью макросредств языка Ассемблер.

12.1. Сравнение процедур и макроопределений.

Как мы уже говорили, на Ассемблере один и тот же алгоритм программист, как правило, может реализовать как в виде процедуры, так и в виде макроопределения. Процедура будет вызываться командой call с передачей параметров по стандартным или нестандартным соглашениям о связях, а макроопределение – макрокомандой, также с заданием соответствующих параметров. Сравним эти два метода разработки программного обеспечения между собой, оценим достоинства и недостатки каждого из них.

Для изучения этого вопроса рассмотрим пример какого-нибудь простого алгоритма и реализуем его двумя указанными выше способами. Пусть, например, надо реализовать оператор присваивания ax:=max(X,Y), где X и Y – знаковые целые значения размером в слово. Сначала реализуем этот оператор в виде функции со стандартными соглашениями о связях, например, так:

Max proc near

push bp

mov bp,sp

mov ax,[bp+6]

cmp ax,[bp+4]

jge L

mov ax,[bp+4]

L: pop bp

ret 4

Max endp

Тело нашей функции состоит из 8 команд, а каждый вызов этой функции занимает не менее 3-х команд, например:

; ax:=Max(A,B) ; ax:=Max(Z,-13)

push A push Z

push B mov ax,-13

call Max push ax

call Max

Реализуем теперь нашу функцию в виде макроопределения, например, так (не будем принимать во внимание, что это макроопределение будет неправильно работать для вызовов вида Max Z,ax ):

Max macro X,Y

local L

mov ax,X

cmp ax,Y

jge L

mov ax,Y

L:

endm

Как видим, каждый вызов нашего макроопределения будет порождать макрорасширение в четыре команды, а каждый вызов процедуры занимает 3-4 команды, да ещё сама процедура имеет длину 8 команд. Таким образом, для коротких алгоритмов выгоднее реализовывать их в виде макроопределений.72 Всё, конечно, меняется, если длина макрорасширения будет хотя бы 10 команд. В этом случае, если, например, в нашей программе содержится 20 макрокоманд, то в сумме во всех макрорасширениях будет 20*10=200 команд. В случае же реализации алгоритма в виде процедуры (пусть её длина тоже 10 команд) и 20-ти вызовов этой процедуры нам потребуется всего 20*4+10=90 команд. Получается, что для достаточно сложных алгоритмов реализация в виде процедуры более выгодна, что легко понять, если учесть, что процедура присутствует в памяти только в одном экземпляре, а каждая макрокоманда требует своего экземпляра макрорасширения, которое будет располагаться в программе на месте этой макрокоманды.

С другой стороны, однако, макроопределения предоставляют программисту такие уникальные возможности, как настройка алгоритма на типы передаваемых параметров, лёгкую реализацию переменного числа параметров, хорошую выдачу диагностик об ошибочных параметрах. Такие возможности весьма трудно и неэффективно реализовываются с помощью процедур.

Исходя из вышеизложенного, наиболее перспективным является гибридный метод: реализовать алгоритм в виде макроопределения, в котором производится настройка на типы параметров и выдачу диагностики, а потом, если нужно, вызывается процедура для реализации основной части алгоритма. Именно так устроены достаточно сложные макроопределения inint и outint, которыми Вы часто пользуетесь.

На этом мы закончим наше по необходимости краткое изучение макросредств языка Ассемблера, ещё раз напомним, что необходимо тщательно изучить эту тему в учебнике по языку Ассемблера.

13. ???????????????????????????????????

14. Понятие о мультипрограммном режиме работы.

Архитектура машин фон Неймана предполагает, что последовательно выполняются не только команды текущей программы, но и также и сами программы. Другими словами, пока одна программа полностью не заканчивалась, следующая программа не загружалась в память и не начинала выполняться. Такой режим счёта программ называется пакетным режимом работы ЭВМ. Разумеется, такое название этому режиму было дано только после того, как появились и другие режимы работы ЭВМ.

Сейчас мы познакомимся с весьма сложным понятием – мультипрограммным (иногда говорят, многопрограммным) режимом работы ЭВМ. Мультипрограммный режим работы означает, что в оперативной памяти компьютера одновременно находится несколько независимых друг от друга и готовых к счёту программ.73 Особо следует подчеркнуть, что это могут быть и программы разных пользователей.

Мультипрограммный режим работы появился только на ЭВМ, начиная с 3-го поколения, на первых компьютерах его не было [3]. Сейчас нам сначала предстоит разобраться, для чего вообще нужно, чтобы в памяти одновременно находилось несколько программ. Этот вопрос вполне естественный, так как у подавляющего большинства компьютеров только один центральный процессор, так что одновременно может считаться только одна программа.

Частично мы уже обосновали необходимость присутствия в оперативной памяти нескольких программ, когда изучали систему прерываний. Как правило, при возникновении прерывания происходит автоматическое переключение на некоторую другую программы, которая тоже, конечно, должна находиться в оперативной памяти. Здесь, однако, можно возразить, что все программы, на которые производится автоматическое переключение при прерывании, являются системными программами (входят в операционную систему),74 а при определении мультипрограммного режима работы мы особо подчёркивали, что в оперативной памяти могут одновременно находиться несколько разных программ обычных пользователей.

Следует указать две основные причины, по которым может понадобиться мультипрограммный режим работы. Во-первых, может потребоваться одновременно выполнять несколько программ. Например, это могут быть программы, которые в диалоговом режиме работают с разными пользователями (программисты Вася и Петя одновременно с разных терминалов отлаживают свои программы, см. рис. 14.1).

Оперативная память

Программа Васи

Программа Пети

. . .

Программы операционой системы

Рис. 14.1. Одновременное нахождение в памяти нескольких программ пользователей.

Правда, здесь возникает следующая трудность: так как центральный процессор на компьютере один, то в каждый момент времени может выполняться или программа Васи, или программа Пети (ну, или служебная программа операционной системы). Эта трудность преодолевается введением специального режима работы ЭВМ – режима разделения времени, который является частным случаем мультипрограммного режима. В режиме разделения времени, используя сигналы прерывания от встроенных в компьютер часов (таймера), процедура-обработчик этого прерывания переключает центральный процессор с одной задачи пользователя на другую по истечению определённого кванта времени (обычно порядка нескольких единиц или десятков миллисекунд). В этом режиме и у Васи и у Пети создаётся иллюзия, что только его программа всё время считается на компьютере (правда, почему-то медленнее ).

Если отвлечься от несколько шутливого примера с Васей и Петей, то можно заметить, что потребность в таком псевдопараллельном счёте нескольких программ на компьютере с одним центральным процессором весьма распространена. Пусть, например, наш компьютер предназначен для управления несколькими различными химическими реакторами на каком-нибудь заводе, или обслуживает запросы сразу многих абонентов в библиотеке и т.д.

Другая причина широкого распространения мультипрограммного режима заключается в следующем. Наряду с главной частью – центральным процессором и оперативной памятью – в компьютере существует и большое количество так называемых периферийных (внешних) устройств, это диски, клавиатура, мышь, печатающие устройства, линии связи и т.д. (см. рис. 14.2). Все эти периферийные устройства работают значительно более медленно, чем центральный процессор и оперативная память. Имеется в виду, что все они значительно медленнее манипулируют данными. Например, за то время, за которое быстрый лазерный принтер напечатает один символ, оперативная память способна выдать центральному процессору около 3 миллионов байт, а сам центральный процессор способен за это время выполнить порядка одного миллиона команд.

Диски

Сеть

Мышь

Клавиатура

Дисплей

Оперативная

память

Печать

Центральный процессор

Рис. 14.2. Центральная и периферийная части компьютера.

Поэтому очевидно, что в то время, когда по запросу некоторой программы производится обмен данными с медленными внешними устройствами, центральный процессор не сможет выполнять команды этой программы, т.е. будет простаивать. Например, рассмотрим случай, когда в программе Васи выполняются операторы

Read(MyFile,X); Y:=X+1;

Очевидно, что оператор присваивания Y:=X+1 не сможет начать выполняться, пока из файла не будет прочитано значение переменной X. Вот здесь нам и пригодится способность компьютера автоматически переключаться на выполнение других программ, тоже расположенных в оперативной памяти. Пока одна программа выполняет свои команды на центральном процессоре, другая может выводить свои данные на принтер, третья – читать массив с диска в оперативную память, четвёртая – ждать ввода символа с клавиатуры и т.д. Правда, для того, чтобы обеспечить такую возможность, мало наличия на компьютере одной системы прерываний. Прежде всего, необходимо научить периферийные устройства компьютера работать параллельно и относительно независимо от центрального процессора.

Как мы говорили, на первых ЭВМ не было режима мультипрограммирования. Сейчас мы сформулируем необходимые требования, которые предъявляются к аппаратуре компьютера, чтобы на этом компьютере было возможно реализовать мультипрограммный режим работы. Сначала заметим, что требование параллельной работы центрального процессора и периферийных устройств, не являются необходимым для режима разделения времени, который, как мы уже говорили, является частным случаем мультипрограммного режима работы. Поэтому мы не будем включать это требование в перечень обязательных свойств аппаратуры ЭВМ для обеспечения работы в мультипрограммном режиме. Скажем, однако, что параллельная работа периферийных устройств и центрального процессора реализована на большинстве современных ЭВМ и на всех больших и супер-ЭВМ.

14.1. Требования к аппаратуре для обеспечения возможности работы в мультипрограммном режиме.

Итак, сформулируем необходимые требования к аппаратуре ЭВМ для обеспечения возможности мультипрограммной работы.

14.1.1. Система прерываний.

Система прерываний необходима как для режима разделения времени, так и для обеспечения параллельной работы центрального процессора и периферийных устройств, так как обеспечивает саму возможность реакции на события и автоматического переключения с одной программы на другую.

14.1.2. Механизм защиты памяти.

Этот механизм обеспечивает безопасность одновременного нахождения в оперативной памяти нескольких независимых программ. Защита памяти гарантирует, что одна программа не сможет случайно или же предумышленно обратиться в память другой программы (по записи или даже по чтению данных). Очевидно, что без такого механизма мультипрограммный режим просто невозможен.75

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее