182 (Описание систем управления беспилотными летательными аппаратами), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Описание систем управления беспилотными летательными аппаратами", который расположен в категории "". Всё это находится в предмете "авиация и космонавтика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "авиация и космонавтика" в общих файлах.

Онлайн просмотр документа "182"

Текст 2 страницы из документа "182"

Бортовой комплекс навигации и управления БЛА

Бортовой комплекс "Аист" является полнофункциональным средством навигации и управления беспилотного летательного аппарата (БЛА) самолетной схемы. Комплекс обеспечивает: определение навигационных параметров, углов ориентации и параметров движения БЛА (угловых скоростей и ускорений); навигацию и управление БЛА при полете по заданной траектории; стабилизацию углов ориентации БЛА в полете; выдачу в канал передачи телеметрической информации о навигационных параметрах, углах ориентации БЛА. Центральным элементом БК "Аист" является малогабаритная инерциальная навигационная система (ИНС), интегрированная с приемником спутниковой системы навигации. Построенная на базе микроэлектромеханических датчиков (МЕМS гироскопов и акселерометров) по принципу бесплатформенной ИНС, система является уникальным высокотехнологичным изделием, гарантирует высокую точность навигации, стабилизации и управления ЛА любого класса. Встроенный датчик статического давления обеспечивает динамичное определение высоты и вертикальной скорости. Состав бортового комплекса: блок инерциальной навигационной системы; приемник СНС; блок автопилота; накопитель Летных Данных; датчик воздушной скорости В базовой конфигурации управление осуществляется по каналам: элероны; руль высоты; руль направления; контроллер двигателя. Комплекс совместим с радиоканалом РСМ (импульсно-кодовая модуляция) и позволяет управлять БЛА как в ручном режиме со стандартного пульта дистанционного управления, так и в автоматическом, по командам автопилота. Управляющие команды автопилота генерируются в форме стандартных широтно-импульсно-модулированных (ШИМ) сигналов, подходящих к большинству типов исполнительных механизмов. Физические характеристики:

размеры, мм: блок автопилота - 80 х 47 х 10; ИНС – 98 х 70 х 21; приемник СНС - 30 х 30 х 10; вес, кг: блок автопилота - 0,120; ИНС - 0,160; приемник СНС - 0,03. Электрические характеристики: напряжение питания, В - 10...27; потребляемая мощность (макс.), Вт - 5. Окружающая среда: температура, град С - от –40 до +70; вибрация/удар, g - 20.

Управление: порты RS-232 (2) - прием/передача данных; порты RS-422 (5) – связь с внешними устройствами; каналы ШИМ (12) - управляющие устройства; программируемые ППМ (255) - поворотные пункты маршрута. Рабочие диапазоны: крен - ±180°; тангаж - ±90°; курс (путевой угол) - 0...360; ускорение - ±10 g; угловая скорость - ±150°/сек

Система управления пространственным положением остронаправленных антенных систем в комплексах БЛА

Сам по себе беспилотный летательный аппарат (БЛА) – лишь часть сложного комплекса, одна из основных задач которого – оперативное доведение полученных сведений до оперативного персонала пункта управления (ПУ). Возможность обеспечения устойчивой связи является одной из важнейших характеристик, определяющих эксплуатационные возможности комплекса управления БЛА и обеспечивает доведение сведений, полученных БЛА, в режиме «реального времени» до оперативного персонала ПУ. Для обеспечения связи на значительные расстояния и повышения помехозащищенности за счет пространственной селекции в комплексах управления БЛА широко используются остронаправленные антенные системы (АС) как на ПУ, так и на БЛА. Функциональная схема системы управления пространственным положением остронаправленной АС, обеспечивающая оптимизацию процесса вхождения в связь в комплексах управления БЛА, приведена на рис. 1.

Система управления остронаправленной АС (см. рис. 1) включает в себя:

• Собственно остронаправленную АС, радиотехнические параметры которой выбираются, исходя из требований обеспечения необходимой дальности связи по радиолинии.

• Сервопривод АС, обеспечивающий пространственную ориентацию ДН АС в направлении ожидаемого появления излучения объекта связи.

• Систему автоматического сопровождения по направлению (АСН), обеспечивающую устойчивое автосопровождение объекта связи в зоне уверенного захвата пеленгационной характеристики системы АСН.

• Радиоприемного устройства, обеспечивающего формирование сигнала «Связь», свидетельствующего о приеме информации с заданным качеством.

• Процессор управления антенной системой, обеспечивающий анализ текущего состояния системы управления АС, формирование сигналов управления сервоприводом для обеспечения пространственной ориентации АС в соответствии с полетным заданием и алгоритмом пространственного сканирования, анализ наличия связи, анализ возможности перевода сервопривода АС из режима «Внешнее управление» в режим «Автосопровождение», формирование сигнала перевода сервопривода АС в режим «Внешнее управление».

Рис. 1. Функциональная схема системы управления пространственным положением остронаправленной АС в комплексах управления БЛА

Основная задача, выполняемая системой управления пространственным положением остронаправленной АС, – обеспечить устойчивое вхождение в связь с объектом, заданным полетным заданием.

Эта задача распадается на ряд подзадач:

• Обеспечение пространственной ориентации ДН АС в направлении ожидаемого появления излучения объекта связи и ее пространственной стабилизации для случая расположения АС на борту летательного аппарата.

• Расширение зоны устойчивого захвата излучения объекта связи за счет применения дискретного алгоритма пространственного сканирования с детерминированной пространственно-временной структурой.

• Переход в режим устойчивого автосопровождения объекта связи системой АСН при обнаружении объекта связи.

• Обеспечение возможности повторного вхождения в связь в случае ее срыва. Для дискретного алгоритма пространственного сканирования с детерминированной пространственно-временной структурой можно выделить следующие особенности:

• Сканирование ДН АС осуществляется дискретно во времени и в пространстве. • Пространственные перемещения ДН АС при сканировании осуществляются таким образом, чтобы не оставалось пространственных зон, которые не перекрываются зоной уверенного захвата система АСН за весь цикл сканирования (см. рис.2).

Рис.2. Пример организации дискретного пространственного сканирования в азимутальной и угломестной плоскостях

Для каждого конкретного пространственного положения, определяемого алгоритмом сканирования, можно выделить две фазы: «Автосопровождение» и «Внешнее управление».

• В фазе «Автосопровождение» система АСН осуществляет оценку возможности приема излучения объекта связи для выбранного пространственного положения РСН.

В случае положительного результата оценки: Пространственное сканирование прекращается. Система АСН продолжает осуществлять автосопровождение излучения объекта связи по своему внутреннему алгоритму. На вход сервопривода АС поступают сигналы пространственной ориентации АС по данным текущего пеленга объекта связи от системы АСН XАСН(t). В случае отрицательного результата оценки: Осуществляется пространственное перемещение РСН АС в следующее пространственное положение, определяемое алгоритмом сканирования.

• В фазе «Внешнее управление» на выходе процессора управления антенной системой формируются сигналы управления сервоприводом АС. Компоненты сигнала управления сервоприводом обеспечивают:

X0 – первоначальную пространственную ориентацию ДН АС в направлении на объект связи; ∆XЛА(t)–парирование пространственных эволюций летательного аппарата; XАЛГ(t) – расширение зоны устойчивого захвата излучения объекта связи системы АСН в соответствии с дискретным алгоритмом пространственного сканирования с детерминированной пространственно-временной структурой.

В случае срыва связи, начиная с момента времени ТСВ=0 (пропадание сигнала «СВЯЗЬ»), сигнал XАСНСВ=0) запоминается в устройстве «Вычисления и хранения», и используется в дальнейшем процессором управления АС в качестве значения ожидаемого пеленга объекта связи. Процесс вхождения в связь повторяется как описано выше. В режиме «Внешнее управление» сигнал управления сервоприводом остронаправленной АС по каналам «курс», «тангаж» и «крен» может быть записан

(1)

В режиме «Автосопровождение» сигнал управления сервоприводом остронаправленной АС может быть записан

(2)

Конкретный вид сигналов управления определяется конструктивными особенностями сервопривода антенной системы.

Инерциальная система БЛА

Ключевым моментом в упомянутой цепочке является «измерение состояния системы».То есть координат местоположения, скорости, высоты, вертикальной скорости, углов ориентации, а также угловых скоростей и ускорений. В бортовом комплексе навигации и управления, разработанном и производимым ООО «ТеКнол», функцию измерения состояния системы выполняет малогабаритная инерциальная интегрированная система (МИНС). Имея в своем составе триады инерциальных датчиков микромеханических гироскопов и акселерометоров), а также барометрический высотомер и трехосный магнитометр, и комплексируя данные этих датчиков с данными приемника GPS, система вырабатывает полное навигационное решение по координатам и углам ориентации. МИНС разработки ТеКнола – это полная Инерциальная система, в которой реализован алгоритм бесплатформенной ИНС, интегрированной с приемником системы спутниковой навигации. Именно в этой системе содержится «секрет» работы всего комплекса управления БЛА. По сути, одновременно работают три навигационных системы в одном вычислителе по одним и тем же данным. Мы их называем «платформами». Каждая из платформ реализует свои принципы управления, имея свои «правильные» частоты (низкие или высокие). Мастер-фильтр выбирает оптимальное решение с любой из трех платформ в зависимости от характера движения. Этим обеспечивается устойчивость системы не только в прямолинейном движении, но и при виражах, некоординированных разворотах, боковом порывистом ветре. Система никогда не теряет горизонт, чем обеспечиваются правильные реакции автопилота на внешние возмущения и адекватное распределение воздействий между органами управления БЛА.

Бортовой комплекс управления БЛА

В состав Бортового Комплекса Навигации и Управления БЛА входят три составных элемента (Рисунок 1).

1. Интегрированная Навигационная Система;

2. Приемник Спутниковой Навигационной системы

3. Модуль автопилота.__

Модуль автопилота осуществляет выработку управляющих команд в виде ШИМ (широтно-импульсно-модулированных) сигналов, сообразно законам управления, заложенным в его вычислитель. Помимо управления БЛА, автопилот программируется на управление бортовой аппаратурой:

• стабилизация видеокамеры,

• синхронизированное по времени и координатам срабатывание затвора

фотоаппарата,

• выпуск парашюта,

• сброс груза или отбор проб в заданной точке

и другие функции. В память автопилота может быть занесено до 255 поворотных пунктов маршрута. Каждая точка характеризуется координатами, высотой прохождения и скоростью полета.

В полете автопилот также обеспечивает выдачу в канал передачи телеметрической информации для слежения за полетом БЛА (Рисунок 2).

А что же тогда представляет собой «квазиавтопилот»? Многие фирмы сейчас декларируют, что обеспечивают своим системам автоматический полет с помощью «самого маленького в мире автопилота».

Наиболее показательный пример такого решения — продукция канадской фирмы “Micropilot”. Для формирования сигналов управления здесь используют «сырые» данные – сигналы от гироскопов и акселерометров. Такое решение по определению не является робастным (устойчивым к внешним воздействиям и чувствительным к условиям полета) и в той или иной степени работоспособно только при полете в стабильной атмосфере.

Любое существенное внешнее возмущение (порыв ветра, восходящий поток или воздушная яма) чревато потерей ориентации летательного аппарата и аварией. Поэтому все, кто когда-либо сталкивался с подобной продукцией, рано или поздно понимали ограниченность таких автопилотов, которые никак не могут быть использованы в коммерческих серийных системах БЛА.

Более ответственные разработчики понимая, что необходимо настоящее навигационное решение, пытаются реализовать навигационный алгоритм с применением известных подходов Калмановской фильтрации.

К сожалению, и здесь не все так просто. Калмановская фильтрация — это всего лишь вспомогательный математический аппарат, а не решение задачи. Поэтому невозможно создать робастную устойчивую систему, просто перенося на MEMS интегрированные системы стандартный математический аппарат. Требуется тонкая и точная настройка на конкретное приложение. В данном случае – для маневренного объекта крылатой схемы. В нашей системе реализован более чем 15-ти летний опыт разработки инерциальных систем и алгоритмов комплексирования ИНС и GPS. К слову сказать, в мире только несколько стран обладают ноу-хау инерциальных систем. Это

Россия, США, Германия, Франция и Великобритания. За этим ноу-хау стоят научные, конструкторские и технологические школы, и по меньшей мере

наивно думать, что такую систему можно разработать и изготовить «на коленке» в институтской лаборатории или в ангаре аэродрома. Дилетантский подход здесь, как и во всех прочих случаях, чреват в конечном счете финансовыми потерями и потерей времени. Почему столь важен автоматический полет применительно к задачам, решаемым предприятиями топливно-энергетического комплекса? Понятно, что сам воздушный мониторинг не имеет альтернативы. Контроль за состоянием трубопроводов и других объектов, задачи охраны, мониторинга и видеонаблюдения лучше всего решаются с применением летательных аппаратов. А вот снижение издержек, обеспечение регулярности полетов, автоматизация сбора и обработки информации — здесь, совершенно справедливо уделяется внимание беспилотной технике, что и доказывает высокий интерес специалистов к проходящей выставке и форуму. Однако, как мы видели на выставке, беспилотные системы также могут представлять собой сложные и дорогие комплексы, требующие поддержки, обслуживания, создания наземной инфраструктуры и служб эксплуатации. В наибольшей степени это относится к комплексам, изначально созданным для решения военных задач, а теперь спешно адаптируемым к хозяйственным применениям. Отдельно остановимся на вопросах эксплуатации. Управление БЛА — задача для хорошо подготовленного профессионала. В армии США операторами БЛА становятся действующие пилоты ВВС после годовой подготовки и тренинга. Во многих аспектах это сложнее, чем пилотирование самолета, и, как известно, большинство аварий беспилотных ЛА вызваны ошибками пилота-оператора. Автоматические системы БЛА, оснащенные полноценной системой автоматического управления требуют минимальной подготовки наземного персонала, при этом решают задачи на большом удалении от места базирования, вне контакта с наземной станцией, в любых погодных условиях. Они просты в эксплуатации, мобильны, быстро развертываются и не требуют наземной инфраструктуры. Можно утверждать, что высокие характеристики систем БЛА, оснащенных полноценной САУ, снижают эксплуатационные издержки и требования к персоналу.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее